Skip to main content

Model Systems for Examining Effects of Leukemia Associated Oncogenes in Primary Human CD34+ Cells via Retroviral Transduction

  • Protocol
  • First Online:
Leukemia

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 538))

Summary

The use of primary human cells to model cancer initiation and progression is now within the grasp of investigators. It has been nearly a decade since the first defined genetic elements were introduced into primary human epithelial and fibroblast cells to model oncogenesis. This approach has now been extended to the hematopoietic system, with the first described experimental transformation of primary human hematopoietic cells. Human cell model systems will lead to a better understanding of the species and cell type specific signals necessary for oncogenic initiation and progression, and will allow investigators to interrogate the cancer stem cell hypothesis using a well-defined hierarchical system that has been studied for decades. The molecular and biochemical link between self-renewal and differentiation can now be experimentally approached using primary human cells. In addition, the models that result from these experiments are likely to generate highly relevant systems for use in identification and validation of potential therapeutic targets as well as testing of small molecule therapeutics. We describe here the methodologies and reagents that are used to examine the effects of leukemia fusion protein expression on primary human hematopoietic cells, both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharpless NE, Depinho RA. (2006). The mighty mouse: Genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov;5(9):741–54.

    Article  PubMed  CAS  Google Scholar 

  2. Rangarajan A, Weinberg RA. (2003). Opinion: Comparative biology of mouse versus human cells: Modelling human cancer in mice. Nat Rev Cancer;3(12):952–9.

    Article  PubMed  CAS  Google Scholar 

  3. Rangarajan A, Hong SJ, Gifford A, Weinberg RA. (2004). Species- and cell type-specific requirements for cellular transformation. Cancer Cell;6(2):171–83.

    Article  PubMed  CAS  Google Scholar 

  4. Drayton S, Peters G. (2002). Immortalisation and transformation revisited. Curr Opin Genet Dev;12(1):98–104.

    Article  PubMed  CAS  Google Scholar 

  5. Smogorzewska A, de Lange T. (2002). Different telomere damage signaling pathways in human and mouse cells. Embo J ;21(16):4338–48.

    Article  PubMed  CAS  Google Scholar 

  6. Hamad NM, Elconin JH, Karnoub AE, et al. (2002). Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev;16(16):2045–57.

    Article  PubMed  CAS  Google Scholar 

  7. Lim KH, Baines AT, Fiordalisi JJ, et al. (2005). Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell;7(6):533–45.

    Article  PubMed  CAS  Google Scholar 

  8. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. (1999). Creation of human tumour cells with defined genetic elements. Nature;400(6743):464–8.

    Article  PubMed  CAS  Google Scholar 

  9. Hahn WC, Weinberg RA. (2002). Rules for making human tumor cells. N Engl J Med;347(20):1593–603.

    Article  PubMed  CAS  Google Scholar 

  10. Pereira DS, Dorrell C, Ito CY, et al. (1998). Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells. Proc Natl Acad Sci U S A;95(14):8239–44.

    Article  PubMed  CAS  Google Scholar 

  11. Grignani F, Valtieri M, Gabbianelli M, et al. (2000). PML/RAR alpha fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood;96(4):1531–7.

    PubMed  CAS  Google Scholar 

  12. Mulloy JC, Cammenga J, MacKenzie KL, Berguido FJ, Moore MA, Nimer SD. (2002). The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood;99(1):15–23.

    Article  PubMed  CAS  Google Scholar 

  13. Buske C, Feuring-Buske M, Antonchuk J, et al. (2001). Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. Blood;97(8):2286–92.

    Article  PubMed  CAS  Google Scholar 

  14. Daga A, Podesta M, Capra MC, Piaggio G, Frassoni F, Corte G. (2000). The retroviral transduction of HOXC4 into human CD34(+) cells induces an in vitro expansion of clonogenic and early progenitors. Exp Hematol;28(5):569–74.

    Article  PubMed  CAS  Google Scholar 

  15. Barabe F, Kennedy JA, Hope KJ, Dick JE. (2007). Modeling the initiation and progression of human acute leukemia in mice. Science;316(5824):600–4.

    Article  PubMed  CAS  Google Scholar 

  16. Bowie MB, Kent DG, Dykstra B, et al. (2007). Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc Natl Acad Sci U S A;104(14):5878–82.

    Article  PubMed  CAS  Google Scholar 

  17. Holyoake TL, Nicolini FE, Eaves CJ. (1999). Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp Hematol;27(9):1418–27.

    Article  PubMed  CAS  Google Scholar 

  18. Kelly PF, Carrington J, Nathwani A, Vanin EF. (2001). RD114-pseudotyped oncoretroviral vectors. Biological and physical properties. Ann N Y Acad Sci;938:262–76; discussion 76–7.

    Article  PubMed  CAS  Google Scholar 

  19. Kelly PF, Vandergriff J, Nathwani A, Nienhuis AW, Vanin EF. (2000). Highly efficient gene transfer into cord blood nonobese diabetic/severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. Blood;96(4):1206–14.

    PubMed  CAS  Google Scholar 

  20. Hanawa H, Kelly PF, Nathwani AC, et al. (2002). Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol Ther;5(3):242–51.

    Article  PubMed  CAS  Google Scholar 

  21. Wunderlich M, Krejci O, Wei J, Mulloy JC. (2006). Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability. Blood;108(5):1690–7.

    Article  PubMed  CAS  Google Scholar 

  22. Mulloy JC, Cammenga J, Berguido FJ, et al. (2003). Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood;102(13):4369–76.

    Article  PubMed  CAS  Google Scholar 

  23. Itoh K, Tezuka H, Sakoda H, et al. (1989). Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp Hematol;17(2):145–53.

    PubMed  CAS  Google Scholar 

  24. Ito M, Hiramatsu H, Kobayashi K, et al. (2002). NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood;100(9):3175–82.

    Article  PubMed  CAS  Google Scholar 

  25. Nicolini FE, Cashman JD, Hogge DE, Humphries RK, Eaves CJ. (2004). NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia;18(2):341–7.

    Article  PubMed  CAS  Google Scholar 

  26. Feuring-Buske M, Gerhard B, Cashman J, Humphries RK, Eaves CJ, Hogge DE. (2003). Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia;17(4):760–3.

    Article  PubMed  CAS  Google Scholar 

  27. Haas DL, Case SS, Crooks GM, Kohn DB. (2000). Critical factors influencing stable transduction of human CD34(+) cells with HIV-1-derived lentiviral vectors. Mol Ther;2(1):71–80.

    Article  PubMed  CAS  Google Scholar 

  28. Sandrin V, Boson B, Salmon P, et al. (2002). Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood;100(3):823–32.

    Article  PubMed  CAS  Google Scholar 

  29. Wang J, Kimura T, Asada R, et al. (2003). SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood;101(8): 2924–31.

    Article  PubMed  CAS  Google Scholar 

  30. Yahata T, Ando K, Sato T, et al. (2003). A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood;101(8):2905–13.

    Article  PubMed  CAS  Google Scholar 

  31. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JE, Zheng Y, Cancelas JA, Gu Y, Jansen M, DiMartino JF and Mulloy, JC (2008) Microenvironment Determines Lineage Fate in a Human Model of MLL-AF9 Leukemia. Cancer Cell; 13 (6): 483–495.

    Google Scholar 

  32. Mulloy JC, Wunderlich M, Zheng Y, Wei J. (2008) Transforming Human Blood Stem and Progenitor Cells: A New Way Forward in Leukemia Modeling. Cell Cycle; 7(21): 57–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Mulloy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wunderlich, M., Mulloy, J. (2009). Model Systems for Examining Effects of Leukemia Associated Oncogenes in Primary Human CD34+ Cells via Retroviral Transduction. In: Eric So, C.W. (eds) Leukemia. Methods in Molecular Biology™, vol 538. Humana Press. https://doi.org/10.1007/978-1-59745-418-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-418-6_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-989-5

  • Online ISBN: 978-1-59745-418-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics