Skip to main content

Interaction Between Respiratory Syncytial Virus and Glycosaminoglycans, Including Heparan Sulfate

  • Protocol
Glycovirology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 379))

Abstract

Glycosaminoglycans (GAGs), including heparan sulfate (HS), are expressed on the surface of nearly all cells, linked to transmembrane proteins. These GAGs are sulfated to varying extents, lending a negative charge, and are used by a large number of viruses to initiate infection of immortalized cell lines. Here we describe the rationale and methods for analyzing GAG usage by one such virus, respiratory syncytial virus (RS V). The protocols presented allow the determination of which GAG(s) is employed by the virus, which GAG modification(s) is important, and whether the important GAG is on the cell or on the virus. We also discuss the finding that many viruses are selected for GAG usage during passage in culture and present a method for rapidly determining whether GAG usage is characteristic of a wild virus or is limited to laboratory-adapted virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamada, T. and Kawasaki, T. (2005) Microbial synthesis of hyaluronan and chitin: new approaches. J. Biosci. Bioeng. 99, 521–528.

    Article  CAS  PubMed  Google Scholar 

  2. Ajit, V., Richard, C., Jeffrey, E., et al. (2002) The Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  3. Kusche-Gullberg, M. and Kjellen, L. (2003) Sulfotransferases in glycosaminoglycan biosynthesis. Curr. Opin. Struct. Biol. 13, 605–611.

    Article  CAS  PubMed  Google Scholar 

  4. Burstein, M. (1952) [The antithrombin effect of heparin; role of heparin concentration.]. C.R. Seances Soc. Biol. Fil. 146, 641–642.

    CAS  PubMed  Google Scholar 

  5. Sasisekharan, R., Ernst, S., and Venkataraman, G. (1997) On the regulation of fibroblast growth factor activity by heparin-like glycosaminoglycans. Angiogenesis. 1, 45–54.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor, K. R., Rudisill, J. A., and Gallo, R. L. (2005) Structural and sequence motifs in dermatan sulfate for promoting fibroblast growth factor-2 (FGF-2) and FGF-7 activity. J. Biol. Chem. 280, 5300–5306.

    Article  CAS  PubMed  Google Scholar 

  7. Laterra, J., Silbert, J. E., and Culp, L. A. (1983) Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin. J. Cell Biol. 96, 112–123.

    Article  CAS  PubMed  Google Scholar 

  8. Baldassarri, L., Bertuccini, L., Creti, R., et al. (2005) Glycosaminoglycans mediate invasion and survival of Enterococcus faecalis into macrophages. J. Infect. Dis. 191, 1253–1262.

    Article  CAS  PubMed  Google Scholar 

  9. Frick, I. M., Schmidtchen, A., and Sjobring, U. (2003). Interactions between M proteins of Streptococcus pyogenes and glycosaminoglycans promote bacterial adhesion to host cells. Fur. J. Biochem. 270, 2303–2311.

    CAS  Google Scholar 

  10. Henry-Stanley, M. J., Hess, D. J., Erlandsen, S. L., and Wells, C. L. (2005). Ability of the heparan sulfate proteoglycan syndecan-1 to participate in bacterial translocation across the intestinal epithelial barrier. Shock 24, 571–576.

    Article  CAS  PubMed  Google Scholar 

  11. Menozzi, F. D., Pethe, K., Bifani, P., Soncin, F., Brennan, M. J., and Locht, C. (2002) Enhanced bacterial virulence through exploitation of host glycosaminoglycans. Mol. Microbiol. 43, 1379–1386.

    Article  CAS  PubMed  Google Scholar 

  12. van Putten, J. P., Duensing, T. D., and Cole, R. L. (1998) Entry of OpaA+ gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors. Mol. Microbiol. 29, 369–379.

    Article  PubMed  Google Scholar 

  13. Varez-Dominguez, C., Vazquez-Boland, J. A., Carrasco-Marin, E., Lopez-Mato, P., and Leyva-Cobian, F. (1997) Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect. Immun. 65, 78–88.

    Google Scholar 

  14. Barth, H., Schafer, C., Adah, M. L, et al. (2003) Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J. Biol. Chem. 278, 41,003–41,012.

    Article  CAS  PubMed  Google Scholar 

  15. Bousarghin, L., Hubert, P., Franzen, E., Jacobs, N., Boniver, J., and Delvenne, P. (2005) Human papillomavirus 16 virus-like particles use heparan sulfates to bind dendritic cells and colocalize with langerin in Langerhans cells. J. Gen. Virol. 86, 1297–1305.

    Article  CAS  PubMed  Google Scholar 

  16. Byrnes, A. P. and Griffin, D. E. (1998). Binding of Sindbis virus to cell surface heparan sulfate. J. Virol. 72, 7349–7356.

    CAS  PubMed  Google Scholar 

  17. Escribano-Romero, E., Jimenez-Clavero, M. A., Gomes, P., Garcia-Ranea, J. A., and Ley, V. (2004) Heparan sulphate mediates swine vesicular disease virus attachment to the host cell. J. Gen. Virol. 85, 653–663.

    Article  CAS  PubMed  Google Scholar 

  18. Feldman, S. A., Audet, S., and Beeler, J. A. (2000). The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J. Virol. 74, 6442–6447.

    Article  CAS  PubMed  Google Scholar 

  19. Germi, R., Crance, J. M., Garin, D., et al. (2002) Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology 292, 162–168.

    Article  CAS  PubMed  Google Scholar 

  20. Hilgard, P. and Stocken, R. (2000) Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology 32, 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  21. Hulst, M. M., van Gennip, H. G., Vlot, A. C., Schooten, E., de Smit, A. J., and Moormann, R. J. (2001) Interaction of classical swine fever virus with membrane-associated heparan sulfate: role for virus replication in vivo and virulence. J. Virol. 75, 9585–9595.

    Article  CAS  PubMed  Google Scholar 

  22. Jackson, T., Ellard, F. M., Ghazaleh, R. A., et al. (1996) Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 70, 5282–5287.

    CAS  PubMed  Google Scholar 

  23. Jones, K. S., Petrow-Sadowski, C., Bertolette, D. C., Huang, Y., and Ruscetti, F. W. (2005). Heparan sulfate proteoglycans mediate attachment and entry of human T-cell leukemia virus type 1 virions into CD4+ T cells. J. Virol. 79, 12,692–12,702.

    Article  CAS  PubMed  Google Scholar 

  24. Kroschewski, H., Allison, S. L., Heinz, F. X., and Mandl, C. W. (2003) Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. Virology 308, 92–100.

    Article  CAS  PubMed  Google Scholar 

  25. Rue, C. A. and Ryan, P. (2002) Characterization of pseudorabies virus glycoprotein C attachment to heparan sulfate proteoglycans. J. Gen. Virol. 83, 301–309.

    CAS  PubMed  Google Scholar 

  26. WuDunn, D. and Spear, P. G. (1989). Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol. 63, 52–58.

    CAS  PubMed  Google Scholar 

  27. O’ Donnell, C. D., Tiwari, V., Oh, M. J., and Shukla, D. (2005) A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. Virology 346, 452–459.

    Article  PubMed  Google Scholar 

  28. Klimstra, W. B., Ryman, K. D., and Johnston, R. E. (1998) Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J. Virol. 72, 7357–7366.

    CAS  PubMed  Google Scholar 

  29. Mandl, C. W., Kroschewski, H., Allison, S. L., et al. (2001) Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J. Virol. 75, 5627–5637.

    Article  CAS  PubMed  Google Scholar 

  30. Bourgeois, C., Bour, J. B., Lidholt, K., Gauthray, C., and Pothier, P. (1998) Heparin-like structures on respiratory syncytial virus are involved in its infectivity in vitro. J. Virol. 72, 7221–7227.

    CAS  PubMed  Google Scholar 

  31. Feldman, S. A., Crim, R. L., Audet, S. A., and Beeler, J. A. (2001) Human respiratory syncytial virus surface glycoproteins F, G and SH form an oligomeric complex. Arch. Virol. 146, 2369–2383.

    Article  CAS  PubMed  Google Scholar 

  32. Hallak, L., Spillman, D., Collins, P. L., and Peeples, M. E. (2000) Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J. Virol. 74, 10,508–10,513.

    Article  CAS  PubMed  Google Scholar 

  33. Hallak, L. K., Collins, P. L., Knudson, W., and Peeples, M. E. (2000) Iduronic acid-containing glycosaminoglycans on target cells are required for efficient respiratory syncytial virus infection. Virology 271, 264–275.

    Article  CAS  PubMed  Google Scholar 

  34. Krusat, T. and Streckert, H. J. (1997). Heparin-dependent attachment of respiratory syncytial virus (RSV) to host cells. Arch. Virol. 142, 1247–1254.

    Article  CAS  PubMed  Google Scholar 

  35. Shields, B., Mills, J., Ghildyal, R., Gooley, P., and Meanger, J. (2003) Multiple heparin binding domains of respiratory syncytial virus G mediate binding to mammalian cells. Arch.Virol. 148, 1987–2003.

    Article  CAS  PubMed  Google Scholar 

  36. Techaarpornkul, S., Collins, P. L., and Peeples, M. E. (2002). Respiratory syncytial virus with the fusion protein as its only viral glycoprotein is less dependent on cellular glycosaminoglycans for attachment than complete virus. Virology 294, 296–304.

    Article  CAS  PubMed  Google Scholar 

  37. Nakazawa, K., Morita, A., Nakano, H., Mano, C., and Tozawa, N. (1996). Keratan sulfate synthesis by corneal stromal cells within three-dimensional collagen gel cultures. J. Biochem. (Tokyo) 120, 117–125.

    CAS  Google Scholar 

  38. Resch, M. D., Nagy, Z. Z., Szentmary, N., Mathe, M., Kovalszky, I., and Suveges, I. (2005) Spatial distribution of keratan sulfate in the rabbit cornea following photorefractive keratectomy. J. Refract. Surg. 21, 485–493.

    PubMed  Google Scholar 

  39. Zhang, Y., Conrad, A. H., Tasheva, E. S., et al. (2005) Detection and quantification of sulfated disaccharides from keratan sulfate and chondroitin/dermatan sulfate during chick corneal development by ESI-MS/MS. Invest. Ophthalmol. Vis. Sci. 46, 1604–1614.

    Article  PubMed  Google Scholar 

  40. Wendel, M., Sommarin, Y., and Heinegard, D. (1998) Bone matrix proteins: isolation and characterization of a novel cell-binding keratan sulfate proteoglycan (osteoadherin) from bovine bone. J. Cell Biol. 141, 839–847.

    Article  CAS  PubMed  Google Scholar 

  41. Knox, S., Fosang, A. J., Last, K., Melrose, J., and Whitelock, J. (2005) Perlecan from human epithelial cells is a hybrid heparan/chondroitin/keratan sulfate proteoglycan. FEES Lett. 579, 5019–5023.

    Article  CAS  Google Scholar 

  42. Zhang, L., Peeples, M. E., Boucher, R. C., Collins, P. L., and Pickles, R. J. (2002) Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J. Virol. 76, 5654–5666.

    Article  CAS  PubMed  Google Scholar 

  43. Coster, L. and Fransson, L. A. (1981) Isolation and characterization of dermatan sulphate proteoglycans from bovine sciera. Biochem. J. 193, 143–153.

    CAS  PubMed  Google Scholar 

  44. Malstrom, A., Carlstedt, I., Aberg, L., and Fransson, L. A. (1975) The copolymeric structure of dermatan sulphate produced by cultured human fibroblasts. Different distribution of iduronic acid and glucuronic acid-containing units in soluble and cell-associated glycans. Biochem. J. 151, 477–489.

    CAS  PubMed  Google Scholar 

  45. Esko, J. D., Elgavish, A., Prasthofer, T., Taylor, W. H., and Weinke, J. L. (1986) Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine. J. Biol. Chem. 261, 15,725–15,733.

    CAS  PubMed  Google Scholar 

  46. Esko, J. D., Stewart, T. E., and Taylor, W. H. (1985). Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Natl. Acad. Sci. USA 82, 3197–3201.

    Article  CAS  PubMed  Google Scholar 

  47. Esko, J. D., Weinke, J. L., Taylor, W. H., et al. (1987) Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J. Biol. Chem. 262, 12,189–12,195.

    CAS  PubMed  Google Scholar 

  48. Chen, Y., Maguire, T., Hileman, R. E., et al. (1997). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate [see comments], Nat. Med. 3, 866–871.

    Article  CAS  PubMed  Google Scholar 

  49. Mondor, I., Ugolini, S., and Sattentau, Q. J. (1998). Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gpl20 dependent and requires cell surface heparans. J. Virol. 72, 3623–3634.

    CAS  PubMed  Google Scholar 

  50. Zhao, Q., Pacheco, J. M., and Mason, P. W. (2003) Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in animals. J. Virol. 77, 3269–3280.

    Article  CAS  PubMed  Google Scholar 

  51. Heil, M. L., Albee, A., Strauss, J. H., and Kuhn, R. J. (2001) An amino acid substitution in the coding region of the E2 glycoprotein adapts Ross River virus to utilize heparan sulfate as an attachment moiety. J. Virol. 75, 6303–6309.

    Article  CAS  PubMed  Google Scholar 

  52. Techaarpornkul, S., Barretto, N., and Peeples, M. E. (2001) Functional analysis of recombinant respiratory syncytial virus deletion mutants lacking the small hydrophobic and/or attachment glycoprotein gene. J. Virol. 75, 6825–6834.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hallak, L.K., Kwilas, S.A., Peeples, M.E. (2007). Interaction Between Respiratory Syncytial Virus and Glycosaminoglycans, Including Heparan Sulfate. In: Sugrue, R.J. (eds) Glycovirology Protocols. Methods in Molecular Biology, vol 379. Humana Press. https://doi.org/10.1007/978-1-59745-393-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-393-6_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-590-3

  • Online ISBN: 978-1-59745-393-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics