Skip to main content

Microchips for Cell-Based Assays

  • Protocol
Microchip Methods in Diagnostics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 509))

Summary

Analysis of cells is a cornerstone in biomedical research. Traditional methods for cell culture and tissue analysis can be replaced by various microchips as discussed in this chapter. A tissue array is an example of microchip that provides higher throughput of tissue analysis. Other microchips provide completely new functionalities for the researcher. One such example that will be discussed is cell culture chips. The cell culture vessel will be much more competent for studies of cell and will enable real-time monitoring of cell behavior and gene expression at a single cell level, have possibilities for studying chemotaxis and shear stress phenomena in a controlled manner, provide least tissue-like culture conditions by providing micro 3D structures, and provide arrays of integrated detectors. Tissue arrays and the simplest forms of cell culture chips are commercialized today, and we may expect a large activity in this field in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stroock, A.D., Dertinger, S.K., Ajdari, A., Mezic, I., Stone, H.A. and Whitesides, G.M. (2002) Chaotic mixer for microchannels. Science, 295, 647–651.

    Article  CAS  Google Scholar 

  2. Ince, C., Beekman, R.E. and Verschragen, G. (1990) A micro-perfusion chamber for single-cell fluorescence measurements. J Immunol Methods, 128, 227–234.

    Article  CAS  Google Scholar 

  3. Jager, E.W.H., Immerstrand, C., Peterson, K.H., Magnusson, K.-E., Lundström, I. and Inganäs, O. (2002) The cell clinic: closable microvials for single cell studies. Biomedical Microdevices, 4, 177–187.

    Article  Google Scholar 

  4. Prokop, A., Prokop, Z., Schaffer, D., Kozlov, E., Wikswo, J., Cliffel, D. and Baudenbacher, F. (2004) NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale. Biomed Microdevices, 6, 325–339.

    Article  CAS  Google Scholar 

  5. Ho, C.L., Mou, T.Y., Chiang, P.S., Weng, C.L. and Chow, N.H. (2005) Mini chamber system for long-term maintenance and observation of cultured cells. Biotechniques, 38, 267–273.

    Article  CAS  Google Scholar 

  6. Moriguchi, H., Wakamoto, Y., Sugio, Y., Takahashi, K., Inoue, I. and Yasuda, K. (2002) An agar-microchamber cell-cultivation system: flexible change of microchamber shapes during cultivation by photo-thermal etching. Lab Chip, 2, 125–132.

    Article  CAS  Google Scholar 

  7. Tourovskaia, A., Figueroa-Masot, X. and Folch, A. (2005) Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip, 5, 14–19.

    Article  CAS  Google Scholar 

  8. Kojima, K., Kaneko, T. and Yasuda, K. (2004) A novel method of cultivating cardiac myocytes in agarose microchamber chips for studying cell synchronization. J Nanobiotech-nol, 2, 9.

    Article  Google Scholar 

  9. Li Jeon, N., Baskaran, H., Dertinger, S.K., Whitesides, G.M., Van de Water, L. and Toner, M. (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Bio-technol, 20, 826–830.

    Google Scholar 

  10. Blau, A.W. and Ziegler, C.M. (2001) Prototype of a novel autonomous perfusion chamber for long-term culturing and in situ investigation of various cell types. J Biochem Biophys Methods, 50, 15–27.

    Article  CAS  Google Scholar 

  11. Hediger, S., Fontannaz, J., Sayah, A., Hunziker, W. and Gijs, M.A.M. (2000) Bio-system for the culture and characterisation of epithelial cell tissues. Sens Actuators B Chem, 63, 63–73.

    Article  Google Scholar 

  12. Davidsson, R., Boketoft, A., Bristulf, J., Kotarsky, K., Olde, B., Owman, C., Bengts-son, M., Laurell, T. and Emneus, J. (2004) Developments toward a microfluidic system for long-term monitoring of dynamic cellular events in immobilized human cells. Anal Chem, 76, 4715–4720.

    Article  CAS  Google Scholar 

  13. Thompson, D., King, K., Wieder, K., Toner, M., Yarmush, M. and Jayaraman, A. (2004) Dynamic gene expression profiling using a microfabricated living cell array. Anal Bio-chem, 76, 4098–4103.

    Article  CAS  Google Scholar 

  14. Sin, A., Chin, K.C., Jamil, M.F., Kostov, Y., Rao, G. and Shuler, M.L. (2004) The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog, 20, 338–345.

    Article  CAS  Google Scholar 

  15. El-Ali, J., Sorger, P.K. and Jensen, K.F. (2006) Cells on chips. Nature, 442, 403–411.

    Article  CAS  Google Scholar 

  16. Werdich, A.A., Lima, E.A., Ivanov, B., Ges, I., Anderson, M.E., Wikswo, J.P. and Baudenbacher, F.J. (2004) A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab Chip, 4, 357–362.

    Article  CAS  Google Scholar 

  17. Kaji, H., Nishizawa, M. and Matsue, T. (2003) Localized chemical stimulation to micropatterned cells using multiple laminar fluid flows. Lab Chip, 3, 208–211.

    Article  CAS  Google Scholar 

  18. Chung, B.G., Flanagan, L.A., Rhee, S.W., Schwartz, P.H., Lee, A.P., Monuki, E.S. and Jeon, N.L. (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip, 5, 401–406.

    Article  CAS  Google Scholar 

  19. Petronis, S., Stangegaard, M., Christensen, C. and Dufva, M. (2006) Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion. Bio-techniques, 40, 368–376.

    CAS  Google Scholar 

  20. Chung, B.G., Lin, F. and Jeon, N.L. (2006) A microfluidic multi-injector for gradient generation. Lab Chip, 6, 764–768.

    Article  CAS  Google Scholar 

  21. Dertinger, S.K., Jiang, X., Li, Z., Murthy, V.N. and Whitesides, G.M. (2002) Gradients of substrate-bound laminin orient axonal specification of neurons. Proc Natl Acad Sci USA, 99, 12542–12547.

    Article  CAS  Google Scholar 

  22. Lucchetta, E.M., Lee, J.H., Fu, L.A., Patel, N.H. and Ismagilov, R.F. (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microflu-idics. Nature, 434, 1134–1138.

    Article  CAS  Google Scholar 

  23. Lucchetta, E.M., Munson, M.S. and Ismagilov, R.F. (2006) Characterization of the local temperature in space and time around a developing Drosophila embryo in a microflu-idic device. Lab Chip, 6, 185–190.

    Article  CAS  Google Scholar 

  24. Powers, M.J., Domansky, K., KaazempurMofrad, M.R., Kalezi, A., Capitano, A., Upad-hyaya, A., Kurzawski, P., Wack, K.E., Stolz, D.B., Kamm, R. et al. (2002) A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng, 78, 257–269.

    Article  CAS  Google Scholar 

  25. Bianchi, F., Rosi, M., Vozzi, G., Emanueli, C., Madeddu, P. and Ahluwalia, A. (2006) Microfabrication of fractal polymeric structures for capillary morphogenesis: applications in therapeutic angiogenesis and in the engineering of vascularized tissue. J Biomed Mater Res B Appl Biomater

    Google Scholar 

  26. Mapili, G., Lu, Y., Chen, S. and Roy, K. (2005) Laser-layered microfabrication of spatially patterned functionalized tissue- engineering scaffolds. J Biomed Mater Res B Appl Bio-mater, 75, 414–424.

    Article  Google Scholar 

  27. Norman, J.J. and Desai, T.A. (2005) Control of cellular organization in three dimensions using a microfabricated polydimethylsiloxane— collagen composite tissue scaffold. Tissue Eng, 11, 378–386.

    Article  Google Scholar 

  28. Petronis, S., Eckert, K.L., Gold, J. and Wintermantel, E. (2001) Microstructuring ceramic scaffolds for hepatocyte cell culture. J Mater Sci Mater Med, 12, 523–528.

    Article  CAS  Google Scholar 

  29. McDonald, J.C., Duffy, D.C., Anderson, J.R., Chiu, D.T., Wu, H., Schueller, O.J. and Whitesides, G.M. (2000) Fabrication of micro-fluidic systems in poly(dimethylsiloxane). Electrophoresis, 21, 27–40.

    Article  CAS  Google Scholar 

  30. Klank, H., Kutter, J.P. and Geschke, O. (2002) CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip, 2, 242–246.

    Article  CAS  Google Scholar 

  31. Stangegaard, M., Petronis, S., Jorgensen, A.M., Christensen, C.B. and Dufva, M. (2006) A biocompatible micro cell culture chamber (microCCC) for the culturing and on-line monitoring of eukaryote cells. Lab Chip, 6, 1045–1051.

    Article  CAS  Google Scholar 

  32. Hung, P.J., Lee, P.J., Sabounchi, P., Aghdam, N., Lin, R. and Lee, L.P. (2005) A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab Chip, 5, 44–48.

    Article  CAS  Google Scholar 

  33. Hung, P.J., Lee, P.J., Sabounchi, P., Lin, R. and Lee, L.P. (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bio-eng, 89, 1–8.

    Article  CAS  Google Scholar 

  34. Fidkowski, C., Kaazempur-Mofrad, M.R., Borenstein, J., Vacanti, J.P., Langer, R. and Wang, Y. (2005) Endothelialized microvas-culature based on a biodegradable elastomer. Tissue Eng, 11, 302–309.

    Article  CAS  Google Scholar 

  35. Yu, H., Meyvantsson, I., Shkel, I.A. and Beebe, D.J. (2005) Diffusion dependent cell behavior in microenvironments. Lab Chip, 5, 1089–1095.

    Article  CAS  Google Scholar 

  36. Stangegaard, M., Wang, Z., Kutter, J.P., Dufva, M. and Wolff, A. (2006) Whole genome expression profiling using DNA microarray for determining biocompat-ibility of polymeric surfaces. Mol Biosyst, 2, 421–428.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dufva, M. (2009). Microchips for Cell-Based Assays. In: Bilitewski, U. (eds) Microchip Methods in Diagnostics. Methods in Molecular Biology™, vol 509. Humana Press. https://doi.org/10.1007/978-1-59745-372-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-372-1_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-955-0

  • Online ISBN: 978-1-59745-372-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics