Skip to main content

Detection of Enteropathogenic Escherichia coli by Microchip Capillary Electrophoresis

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 509))

Summary

There is always a need to detect the presence of microorganisms, either as contaminants in food and pharmaceutical industries or bioindicators for disease diagnosis. Hence, it is important to develop efficient, rapid, and simple methods to detect microorganisms. Traditional culturing method is unsatisfactory due to its long incubation time. Molecular methods, although capable of providing a high degree of specificity, are not always useful in providing quick tests of presence or absence of microorganisms. Microchip elec-trophoresis has been recently employed to address problems associated with the detection of microorganisms due to its high versatility, selectivity, sensitivity, and short analysis times. In this work, the potential of PDMS-based microchip electrophoresis in the identification and characterization of microorganism was evaluated. Enteropathogenic E. coli (EPEC) was selected as the model microorganism. To obtain repeat-able separations, sample pretreatment was found to be essential. Microchip electrophoresis with laser-induced fluorescence detection could potentially revolutionize certain aspects of microbiology involving diagnosis, profiling of pathogens, environmental analysis, and many others areas of study.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ryan KJ, Champoux JJ, Drew WL, Falkow S, Neidhardt FC, Plorde JJ, Ray CG. (1994) An introduction to infectious Diseases, 3rd edn: Appleton and Lange, stamford, Connecticut.

    Google Scholar 

  2. Mitsuoka T. (1978) Intestinal Bacteria and Helth. Jovanovich, Tokyo: Harcourt Brace.

    Google Scholar 

  3. Forbes BA, Sham DF, Weissfeld AS. (2002) Diagnostic Microbiology. St. Louis, Missouri,United State of America: Mosby Ltd.

    Google Scholar 

  4. Jaspers E, Overmann J. (1997) Separation of bacterial cells by isoelectric focusing, a new method for analysis of complex micro-bial communities. J. Appl. Environ. Micro-biol. 63, 3176–3181.

    CAS  Google Scholar 

  5. Compeau GB, Al-Achl J, Platsouka E, Levy SB. (1988) Survival of Rifampin-resistant mutants of pseudomonas-fluorescens and pseudomonas-putida in soil systems. App. Environt. Micro-bio.54, 2432–2438.

    CAS  Google Scholar 

  6. United States Pharmacopeia, 26th edn. Toronto, Ontario, Canada: Webcon, ltd; 2003.

    Google Scholar 

  7. Chinen I, Tanaro JD, Miliwebsky E, Lound LH, Chillemi G, Ledri S, Baschkier A, Scarpin M, Manfredi ERM. (2001) Isolation and Characterization of Escherichia coli O157: H7 from retail meats in Argentina. J. Food Protection64, 1346–1351.

    CAS  Google Scholar 

  8. Meichtri L, Miliwebsky E, Gioffre A, Chinen I, Baschkier A, Chillemi G, Guth BEC, Masana MO, Cataldi A, Rodriguez HR, et al. (2004) Shiga toxin-producing Escherichia coli in healthy young beef steers from Argentina: prevalence and virulence properties. Int. J. Food Microbiol. 96, 189–198.

    Article  CAS  Google Scholar 

  9. Agace W, Hedges S, Andersson U, Andersson J, Ceska M, Svanborg C. (1993) Selective Cytokine production by Epithelial Cells following Exposure to Escherichia Coli. Infection Immunity 61, 602–609.

    CAS  Google Scholar 

  10. Suzuki K, Tateda K, Matsumoto T, Gondaira F, Tsujimoto S, Yamaguchi K. (2000) Effects of interaction between Escherichia Coli verotonin and lipopolysac-charide on cytokine induction and lethality in mince. J. Med. Microbiol. 49, 905–910.

    CAS  Google Scholar 

  11. Low PS, Lee BW, Yap HK, Tay JS, Lee WL, Seah CC, Ramzan MM. (1995) Inflammatory response in bacterial meningitis:cytokine levels in the cerebrospinal fluid. Ann. Trop. Paediatr. 15, 55–59.

    CAS  Google Scholar 

  12. Breeuwer P, Abee T. (2000) Assessment of viability of microrganisms employing fluorescence techniques. Int. J. Food Microbiol. 55, 193–200.

    Article  CAS  Google Scholar 

  13. Schweickert B, Moter A, Lefmann M, Goebel UB. (2004) Let them fly or light them up: matrix-assisted laser desorption/ ionization time of flight (MALDI-TOF) mass spectrometry and fluorescence in situ hybridi zation (FISH). APMIS, 112, 856–885.

    Article  CAS  Google Scholar 

  14. Belgrader P, Benett W, Hadley D, Richard J, Stratton P, MAriella RJ, Milanovich F. (1999) Infectious disease - PCR detection of bacteria in seven minutes. Science 284, 449–450.

    Article  CAS  Google Scholar 

  15. Bej AK, Mahbubani MH, Atlas RM. (1991) Amplification of nucleic-acids by polymerase chain reaction (PCR) and other methods and their applications. Crit. Rev.Biochem. Mol. 26, 301–334.

    Article  CAS  Google Scholar 

  16. Drysdale M, MacRae M, Strachan NJC, Reid TMS, Ogden ID. (2003) The detection of non-O157 E. coli in food by immu-nomagnetic separation. J. Appl. Microbio. 97, 220–224.

    Article  Google Scholar 

  17. Chen CS, Durst RA. (2006) Simultaneous detection of Escherichia coli O157 : H7, Salmonella spp. and Listeria monocy-togenes with an array-based immunosorbent assay using universal protein G-liposomal nanovesicles. Talanta 69, 232–238.

    Article  CAS  Google Scholar 

  18. Gehring AG, Albin DM, Irwin PL, Reed SA, Tu SI. (2006) Comparison of enzyme-linked immunomagnetic chemiluminescence with US Food and Drug Administration's Bacteriological Analytical Manual method for the detection of Escherichia coli O157 : H7. J. Microbio. Methods, 67, 527–533.

    Article  CAS  Google Scholar 

  19. Bohaychuk VM, Gensler GE, King RK, Wu JT, McMullen LM. (2005) Evaluation of detection methods for screening meat and poultry products for the presence of food-borne pathogens. J. Food Protection68, 2637–2647.

    Google Scholar 

  20. Rodriguez MA, Armstrong DW. (2004) Separation and analysis of colloidal/nano-particles including microorganisms by capillary electrophoresis: a fundamental review. J. Chromatogr. B. 800, 7–25.

    Article  CAS  Google Scholar 

  21. Rodriguez MA, Lantz AW, Armstrong DW. (2006) Capillary electrophoretic method for the detection of bacterial contamination. Anal. Chem. 78, 4759–4767.

    Article  CAS  Google Scholar 

  22. Hjerten S, Elenbring K, Kilar F, Liao F, Chen AJC, Siebert CJ, Zhu M. (1987) Carrier free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high performance electrophoresis apparatus. Chromatogr., 403, 47–61.

    Article  CAS  Google Scholar 

  23. Grossman PD, Soane DS. (1990) Orientation effects on the electrophoretic mobility of rod-shaped molecules in free solution. Anal. Chem. 62, 1592–1596.

    Article  CAS  Google Scholar 

  24. Okun V, Ronacher B, Blaas D, Kenndler E. (1999) Analysis of common cold virus (human Rhinovirus serotype 2) by capillary zone electrophoresis: the problem of peak identification. Anal. Chem. 71, 2028–2032.

    Article  CAS  Google Scholar 

  25. Okun VM, Blaas D, Kenndler E. (1999) Separation and biospecific identification of subviral particlets of human rhinovirus serotype 2 by capillary zone electrophoresis. Anal. Chem.71, 4480–4485.

    Article  CAS  Google Scholar 

  26. Scnabel U, Groiss F, Blaas D, Kenndler E. (1996) Determination of the pI of human rhinovirus serotype 2 by capillary isoelectric focusing. Anal. Chem. 68, 4300–4303.

    Article  Google Scholar 

  27. Ebersole RC, McCormick RM (1993) Separation and isolation of viable bacteria by capillary zone electrophoresis. Bio-Technology 11, 1278–1282.

    CAS  Google Scholar 

  28. Shen YF, Berger SJ, Smith RD. (2000) Capillary isoelectric focusing of yeast cells. Anal. Chem. 72, 4603–4607.

    Article  CAS  Google Scholar 

  29. Armstrong DW, Schulte G, Schneiderheinze JM, Westenberg DJ. (1999) Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Anal. Chem. 71, 5465–5469.

    Article  CAS  Google Scholar 

  30. Armstrong DW, Schneiderheinze JM. (2000) Rapid identification of the bacterial pathogens responsible for urinary tract infections using direct injection CE. Anal. Chem. 72, 4474–4476.

    Article  CAS  Google Scholar 

  31. Schneiderheinze JM, Armstrong DW, Schulte G, Westenberg DJ. (2000) High efficiency separation of microbial aggregates using capillary electrophoresis. Fems Micro-bio. Lett. 189, 39–44.

    Article  CAS  Google Scholar 

  32. Girod M, Armstrong DW. (2002) Monitoring the migration behavior of living microorganisms in capillary electrophoresis using laser-induced fluorescence detection with a charge-coupled device imaging system. Elec-trophoresis. 23, 2048–2056.

    Article  CAS  Google Scholar 

  33. Armstrong DW, He L. (2001) Determination of cell viability in single or mixed samples using capillary electrophoresis laser induced fluorescence microfluidic systems. Anal. Chem.73, 4551–4557.

    Article  CAS  Google Scholar 

  34. Horka M, Ruzicka F, Hola V, Slais K. (2006) Capillary isoelectric focusing of microorganisms in the pH range 2-5 in a dynamically modified FS capillary with UV detection. Anal. Bioanal. Chem. 385, 840–846.

    Article  CAS  Google Scholar 

  35. Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM. (1992) Planar chips technology for miniaturization and integration and integration of separation techniques into a monitoring systems, capillary electrophoresis on a chip. J. Chromatogr. 593, 253–258.

    Article  CAS  Google Scholar 

  36. Kricka LJ, Wilding P. (2003) Microchip PCR. Anal. Bioanal. Chem. 377, 820–825.

    Article  CAS  Google Scholar 

  37. Yuen PK, Kricka LJ, Fortina P, Panaro NJ, Sakazume T, Wilding P. (2001) Microchip module for blood sample preparation and nucleic acid amplification. Genome Res. 11, 405–412.

    Article  CAS  Google Scholar 

  38. Wilding P, Kricka LJ, Cheng J, Hvichia G, Shoffner MA, Fortina P. (1998) Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal. Biochem. 257, 95–100.

    Article  CAS  Google Scholar 

  39. Lou XJ, Panaro NJ, Wilding P, Fortina P, Kricka LJ. (2004) Mutation detection using ligase chain reaction in passivated silicon-glass microchips and microchip capillary electrophoresis. Biotechniques 37, 392.

    CAS  Google Scholar 

  40. Cheng J, Shoffner MA, Mitchelson KR, Kricka LJ, Wilding P. (1996) Analysis of ligase chain reaction products amplified in a silicon-glass chip using capillary electro-phoresis. J. Chromatogr. A 732, 151–158.

    Article  CAS  Google Scholar 

  41. SFY Li, Kricka LJ. (2006) Clinical analysis by microchip capillary electrophoresis. Clin. Chem. 52, 37–45.

    Article  Google Scholar 

  42. Kricka LJ. (2001) Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century. Clin. Chim. Acta 307, 219–223.

    Article  CAS  Google Scholar 

  43. Kricka LJ. (1998) Miniaturization of analysis systems. Clin. Chem. 44, 2008–2014.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Law, W.S., Li, S.F., Kricka, L.J. (2009). Detection of Enteropathogenic Escherichia coli by Microchip Capillary Electrophoresis. In: Bilitewski, U. (eds) Microchip Methods in Diagnostics. Methods in Molecular Biology™, vol 509. Humana Press. https://doi.org/10.1007/978-1-59745-372-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-372-1_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-955-0

  • Online ISBN: 978-1-59745-372-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics