Skip to main content

Assaying Protein-DNA Interactions In Vivo and In Vitro Using Chromatin Immunoprecipitation and Electrophoretic Mobility Shift Assays

  • Protocol
Adenovirus Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 131))

Abstract

Many events in the viral life cycle involve protein binding to defined sequences on the viral chromosome. Chromatin immunoprecipitation allows the detection of the in vivo interaction of specific proteins with specific genomic regions. In this technique, living cells are treated with formaldehyde to crosslink neighboring proteinprotein and proteinDNA molecules. The crosslink with formaldehyde is reversible and covers a short distance (2 Å); the components that are crosslinked are therefore in close proximity. Nuclear fractions are isolated, and the genomic DNA is sheared to reduce the average DNA fragment size to around 500 bp. These nuclear lysates are used in immunoprecipitations with an antibody against the protein of interest. The DNA bound to the studied protein is enriched after the immunoprecipitation. After reversal of the crosslinking, the resulting DNA and proteins can be independently studied.

The electrophoretic mobility shift assay provides a rapid method to study DNA-binding protein interactions in vitro. This assay is based on the observation that complexes of protein and DNA migrate through a nondenaturing polyacrylamide gel more slowly than free DNA fragments. The assay is performed by incubating a purified protein, or a complex mixture of proteins, with a 32P end-labeled DNA probe containing the protein-binding site. The reaction products are analyzed on a nondenaturing polyacrylamide gel. The specificity of the DNAbinding protein for the putative binding site is established by competition experiments using specific and nonspecific nonradiolabeled DNA probes. The components of the complexes can be identified with antibodies to the protein of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, W., Low, J. A., Christensen, J. B., and Imperiale, M. J. (2001) Role for the adenovirus IVa2 protein in packaging of viral DNA. J. Virol. 75, 10,446–10,454.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, W. and Imperiale, M. J. (2003) Requirement of the adenovirus IVa2 protein for virus assembly. J. Virol. 77, 3586–3594.

    Article  CAS  PubMed  Google Scholar 

  3. Perez-Romero, P., Tyler, R. E., Abend, J. R., Dus, M., and Imperiale, M. J. (2005) Analysis of the interaction of the adenovirus L1 52/55-kilodalton and IVa2 proteins with the packaging sequence in vivo and in vitro. J. Virol. 79, 2366–2374.

    Article  CAS  PubMed  Google Scholar 

  4. Ostapchuk, P., Yang, J., Auffarth, E., and Hearing, P. (2005) Functional interaction of the adenovirus IVa2 protein with adenovirus type 5 packaging sequences. J. Virol. 79, 2831–2838.

    Article  CAS  PubMed  Google Scholar 

  5. Ostapchuk, P., Diffley, J. F., Bruder, J. T., Stillman, B., Levine, A. J., and Hearing, P. (1986) Interaction of a nuclear factor with the polyomavirus enhancer region. Proc. Natl. Acad. Sci. USA 83, 8550–8554.

    Article  CAS  PubMed  Google Scholar 

  6. Lutz, P., Puvion-Dutilleul, F., Lutz, Y., and Kedinger, C. (1996) Nucleoplasmic and nucleolar distribution of the adenovirus IVa2 gene product. J. Virol. 70, 3449_3460.

    PubMed  Google Scholar 

  7. Hearing, P. and Shenk, T. (1986) The adenovirus type 5 E1A enhancer contains two functionally distinct domains: one is specific for E1 A and the other modulates all early units in cis. Cell 45, 229–236.

    Article  CAS  PubMed  Google Scholar 

  8. Hasson, T. B., Soloway, P. D., Ornelles, D. A., Doerfler, W., and Shenk, T. (1989) Adenovirus L1 52-and 55-kilodalton proteins are required for assembly of virions. J. Virol. 63, 3612–3621.

    CAS  PubMed  Google Scholar 

  9. Hasson, T. B., Ornelles, D. A., and Shenk, T. (1992) Adenovirus L1 52-and 55-kilodalton proteins are present within assembling virions and colocalize with nuclear structures distinct from replication centers. J. Virol. 66, 6133–6142.

    CAS  PubMed  Google Scholar 

  10. Gustin, K. E. and Imperiale, M. J. (1998) Encapsidation of viral DNA requires the adenovirus L1 52/55-kilodalton protein. J. Virol. 72, 7860–7870.

    CAS  PubMed  Google Scholar 

  11. Evans, J. D. and Hearing, P. (2003) Distinct roles of the adenovirus E4 ORF3 protein in viral DNA replication and inhibition of genome concatenation. J. Virol. 77, 5295–5304.

    Article  CAS  PubMed  Google Scholar 

  12. McGhee, J. D. and von Hippel, P. H. (1975) Formaldehyde as a probe of DNA structure. II. Reaction with endocyclic imino groups of DNA bases. Biochemistry 14, 1297–1303.

    Article  CAS  PubMed  Google Scholar 

  13. Chaw, Y. F., Crane, L. E., Lange, P., and Shapiro, R. (1980) Isolation and identification of cross-links from formaldehyde-treated nucleic acids. Biochemistry 19, 5525–5531.

    Article  CAS  PubMed  Google Scholar 

  14. Jackson, V. (1999) Formaldehyde cross-linking for studying nucleosomal dynamics. Methods 17, 125–139.

    Article  CAS  PubMed  Google Scholar 

  15. Orlando, V., Strutt, H., and Paro, R. (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11, 205–214.

    Article  CAS  PubMed  Google Scholar 

  16. Das, P. M., Ramachandran, K., vanWert, J., and Singal, R. (2004) Chromatin immunoprecipitation assay. Biotechniques 37, 961–969.

    CAS  PubMed  Google Scholar 

  17. Kuo, M. H. and Allis, C. D. (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19, 425–33.

    Article  CAS  PubMed  Google Scholar 

  18. Ausubel, F. M., Brent, R., Kingston, R. E., et al. (2003) Current Protocols in Molecular Biology (Chanda, V. B., ed), Wiley-Liss, Hoboken, NJ.

    Google Scholar 

  19. Lutz, P. and Kedinger, C. (1996) Properties of the adenovirus IVa2 gene product, an effector of late-phase-dependent activation of the major late promoter. J. Virol. 70, 1396–1405.

    CAS  PubMed  Google Scholar 

  20. Tribouley, C., Lutz, P., Staub, A., and Kedinger, C. (1994) The product of the adenovirus intermediate gene IVa2 is a transcriptional activator of the major late promoter. J. Virol. 68, 4450–457.

    CAS  PubMed  Google Scholar 

  21. Zhang, W. and Imperiale, M. J. (2000) Interaction of the adenovirus IVa2 protein with viral packaging sequences. J. Virol. 74, 2687–2693.

    Article  CAS  PubMed  Google Scholar 

  22. Kovesdi, I., Reichel, R., and Nevins, J. R. (1986) E1 A transcription induction: enhanced binding of a factor to upstream promoter sequences. Science 231, 719–722.

    Article  CAS  PubMed  Google Scholar 

  23. Kovesdi, I., Reichel, R., and Nevins, J. R. (1986) Identification of a cellular transcription factor involved in E1A trans-activation. Cell 45, 219–228.

    Article  CAS  PubMed  Google Scholar 

  24. Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74.

    Article  CAS  PubMed  Google Scholar 

  25. Spencer, V. A., Sun, J. M., Li, L., and Davie, J. R. (2003) Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 31, 67–75.

    Article  CAS  PubMed  Google Scholar 

  26. Maxam, A. M. and Gilbert, W. (1977) A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74, 560–564.

    Article  CAS  PubMed  Google Scholar 

  27. Roder, K. and Schweizer, M. (2001) Running-buffer composition influences DNA-protein and protein-protein complexes detected by electrophoretic mobility-shift assay (EMSA). Biotechnol. Appl. Biochem. 33, 209–214.

    Article  CAS  PubMed  Google Scholar 

  28. Andersen, R. D., Taplitz, S. J., Oberbauer, A. M., Calame, K. L., and Herschman, H. R. (1990) Metal-dependent binding of a nuclear factor to the rat metallothionein-I promoter. Nucleic Acids Res. 18, 6049–6055.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Perez-Romero, P., Imperiale, M.J. (2007). Assaying Protein-DNA Interactions In Vivo and In Vitro Using Chromatin Immunoprecipitation and Electrophoretic Mobility Shift Assays. In: Wold, W.S.M., Tollefson, A.E. (eds) Adenovirus Methods and Protocols. Methods in Molecular Medicine™, vol 131. Humana Press. https://doi.org/10.1007/978-1-59745-277-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-277-9_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-901-7

  • Online ISBN: 978-1-59745-277-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics