Skip to main content

Using Evolutionary Information to Find Specificity-Determining and Co-evolving Residues

  • Protocol
  • First Online:
Computational Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 541))

Abstract

Intricate networks of protein interactions rely on the ability of a protein to recognize its targets: other proteins, ligands, and sites on DNA and RNA. To recognize other molecules, it was suggested that a protein uses a small set of specificity-determining residues (SDRs). How can one find these residues in proteins and distinguish them from other functionally important amino acids? A number of bioinformatics methods to predict SDRs have been developed in recent years. These methods use genomic information and multiple sequence alignments to identify positions exhibiting a specific pattern of conservation and variability. The challenge is to delineate the evolutionary pattern of SDRs from that of the active site residues and the residues responsible for formation of the protein’s structure. The phylogenetic history of a protein family makes such analysis particularly hard. Here we present two methods for finding the SDRs and the co-evolving residues (CERs) in proteins. We use a Monte Carlo approach for statistical inference, allowing us to reveal specific evolutionary patterns of SDRs and CERs. We apply these methods to study specific recognition in the bacterial two-component system and in the class Ia aminoacyl-tRNA synthetases. Our results agree well with structural information and the experimental analyses of these systems. Our results point at the complex and distinct patterns characteristic of the evolution of specificity in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kopke Salinas R, Folkers GE, Bonvin AM, Das D, Boelens R, Kaptein R. Altered specificity in DNA binding by the lac repressor: a mutant lac headpiece that mimics the gal repressor. Chembiochem 2005;6:1628–37.

    Article  PubMed  Google Scholar 

  2. de Prat Gay G, Duckworth HW, Fersht AR. Modification of the amino acid specificity of tyrosyl-tRNA synthetase by protein engineering. FEBS Lett 1993;318:167–71.

    Article  PubMed  Google Scholar 

  3. Livingstone CD, Barton GJ. Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput Appl Biosci 1993;9:745–56.

    PubMed  CAS  Google Scholar 

  4. Lichtarge O, Bourne HR, Cohen FE. An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 1996;257:342–58.

    Article  PubMed  CAS  Google Scholar 

  5. Hannenhalli SS, Russell RB. Analysis and prediction of functional sub-types from protein sequence alignments. J Mol Biol 2000;303:61–76.

    Article  PubMed  CAS  Google Scholar 

  6. Kalinina OV, Mironov AA, Gelfand MS, Rakhmaninova AB. Automated selection of positions determining functional specificity of proteins by comparative analysis of orthologous groups in protein families. Protein Sci 2004;13:443–56.

    Article  PubMed  CAS  Google Scholar 

  7. Mirny LA, Gelfand MS. Using orthologous and paralogous proteins to identify specificity-determining residues in bacterial transcription factors. J Mol Biol 2002;321:7–20.

    Article  PubMed  CAS  Google Scholar 

  8. Pei J, Cai W, Kinch LN, Grishin NV. Prediction of functional specificity determinants from protein sequences using log-likelihood ratios. Bioinformatics 2006;22:164–71.

    Article  PubMed  CAS  Google Scholar 

  9. Vernet T, Tessier DC, Khouri HE, Altschuh D. Correlation of co-ordinated amino acid changes at the two-domain interface of cysteine proteases with protein stability. J Mol Biol 1992;224:501–9.

    Article  PubMed  CAS  Google Scholar 

  10. Gobel U, Sander C, Schneider R, Valencia A. Correlated mutations and residue contacts in proteins. Proteins 1994;18:309–17.

    Article  PubMed  CAS  Google Scholar 

  11. Tress M, de Juan D, Grana O, Gomez MJ, Gomez-Puertas P, Gonzalez JM, Lopez G, Valencia A. Scoring docking models with evolutionary information. Proteins 2005;60:275–80.

    Article  PubMed  CAS  Google Scholar 

  12. Shindyalov IN, Kolchanov NA, Sander C. Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations? Protein Eng 1994;7:349–58.

    Article  PubMed  CAS  Google Scholar 

  13. Pollock DD, Taylor WR, Goldman N. Coevolving protein residues: maximum likelihood identification and relationship to structure. J Mol Biol 1999;287:187–98.

    Article  PubMed  CAS  Google Scholar 

  14. Fariselli P, Casadio R. A neural network based predictor of residue contacts in proteins. Protein Eng 1999;12:15–21.

    Article  PubMed  CAS  Google Scholar 

  15. Yu GX, Park BH, Chandramohan P, Munavalli R, Geist A, Samatova NF. In silico discovery of enzyme-substrate specificity-determining residue clusters. J Mol Biol 2005;352:1105–17.

    Article  PubMed  CAS  Google Scholar 

  16. Fitch WM. Distinguishing homologous from analogous proteins. Syst Zool 1970;19:99–113.

    Article  PubMed  CAS  Google Scholar 

  17. Fitch WM. Homology a personal view on some of the problems. Trends Genet 2000;16:227–31.

    Article  PubMed  CAS  Google Scholar 

  18. Blattner FR, Plunkett G, 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. The complete genome sequence of Escherichia coli K-12. Science 1997;277:1453–74.

    Article  PubMed  CAS  Google Scholar 

  19. Skerker JM, Prasol MS, Perchuk BS, Biondi EG, Laub MT. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 2005;3:e334.

    Article  PubMed  Google Scholar 

  20. Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005;33:511–8.

    Article  PubMed  CAS  Google Scholar 

  21. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32: 1792–7.

    Article  PubMed  CAS  Google Scholar 

  22. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402.

    Article  PubMed  CAS  Google Scholar 

  23. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller EJ. Equation-of-state calculations by fast computing machines. J Chem Phys 1953;21:1087–92.

    Article  CAS  Google Scholar 

  24. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem 2000;69:183–215.

    Article  PubMed  CAS  Google Scholar 

  25. Buckler DR, Zhou Y, Stock AM. Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima. Structure 2002;10:153–64.

    Article  PubMed  CAS  Google Scholar 

  26. Birck C, Mourey L, Gouet P, Fabry B, Schumacher J, Rousseau P, Kahn D, Samama JP. Conformational changes induced by phosphorylation of the FixJ receiver domain. Structure 1999;7:1505–15.

    Article  PubMed  CAS  Google Scholar 

  27. Marina A, Waldburger CD, Hendrickson WA. Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. Embo J 2005;24:4247–59.

    Article  PubMed  CAS  Google Scholar 

  28. Tzeng YL, Hoch JA. Molecular recognition in signal transduction: the interaction surfaces of the Spo0F response regulator with its cognate phosphorelay proteins revealed by alanine scanning mutagenesis. J Mol Biol 1997; 272:200–12.

    Article  PubMed  CAS  Google Scholar 

  29. Fukai S, Nureki O, Sekine S, Shimada A, Tao J, Vassylyev DG, Yokoyama S. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell 2000;103:793–803.

    Article  PubMed  CAS  Google Scholar 

  30. Silvian LF, Wang J, Steitz TA. Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. Science 1999;285:1074–7.

    Article  PubMed  CAS  Google Scholar 

  31. Tamura K, Nameki N, Hasegawa T, Shimizu M, Himeno H. Role of the CCA terminal sequence of tRNA(Val) in aminoacylation with valyl-tRNA synthetase. J Biol Chem 1994;269:22173–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kolesov, G., Mirny, L.A. (2009). Using Evolutionary Information to Find Specificity-Determining and Co-evolving Residues. In: Ireton, R., Montgomery, K., Bumgarner, R., Samudrala, R., McDermott, J. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 541. Humana Press. https://doi.org/10.1007/978-1-59745-243-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-243-4_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-905-5

  • Online ISBN: 978-1-59745-243-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics