Skip to main content

Controlling the Release of Proteins/Peptides via the Pulmonary Route

  • Protocol
Book cover Drug Delivery Systems

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 437))

Abstract

The inhalation route is seen as the most promising non-invasive alternative for the delivery of proteins; however, the short duration of activity of drugs delivered via this route brought about by the activities of alveolar macrophages and mucociliary clearance means there is a need to develop controlled release system to prolong the activities of proteins delivered to the lung. Polymeric materials such as (d,l)-poly(lactic glycolic acid) (PLGA), chitosan and poly(ethylene glycol) (PEGs) have been used for controlled release of proteins. Other systems such as liposomes and microcrystallization have also proved effective.

This chapter gives a more detailed understanding of these techniques and the manufacture of the delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Crommelin, D., van Winden, E., Mekking, A. (2002) Delivery of pharmaceutical proteins. In: Aulton, M. E. (ed) Pharmaceutics: The science of dosage form design. Churchill Livingstone, Edinburgh, pp. 544–553.

    Google Scholar 

  2. 2. Shen, W. C., Wan, J., Ekrami, H. (1992) Means to enhance penetration (3). Enhancement of polypeptide and protein absorption by macromolecular carriers via endocytosis and transcytosis. Adv. Drug Deliv. Rev. 8, 93–113.

    Article  CAS  Google Scholar 

  3. 3. Hilsted, J., Madsbad, S., Hvidberg, A., Rasmussen, M. H., Krarup, T., Ipsen, H., Hansen, B., Pedersen, M., Djurup, R., Oxenboll, B. (1995) Intranasal insulin therapy: the clinical realities. Diabetologia 38, 680–684.

    Article  CAS  Google Scholar 

  4. 4. Hollinger, M. A. (1985) Respiratory pharmocology and toxicology. Saunders, Philadelphia, pp. 1–20.

    Google Scholar 

  5. 5. Shoyele, S. A., Slowey, A. (2006) Prospects of formulating proteins/peptides as aerosols for pulmonary drug delivery. Int. J. Pharm. 314, 1–8.

    Article  CAS  Google Scholar 

  6. 6. Edwards, D. A., Hanes, J., Caponetti, G., Hirach, J., Ben- Jebria, A. (1997) Large porous particles for pulmonary drug delivery. Science 276, 1868–1871.

    Article  CAS  Google Scholar 

  7. 7. Aquiar, M. M. G., Rodrigues, J. M., Cunha, A. S. (2004) Encapsulation of insulin-cyclodextrin complex in PLGA microspheres: a new approach to prolonged pulmonary insulin delivery. J. Microencapsul. 21, 553–564.

    Article  Google Scholar 

  8. 8. Koushik, K., Kompella, U. B. (2004) Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using supercritical CO2 process. Pharm. Res. 21, 524–535.

    Article  CAS  Google Scholar 

  9. 9. Courrier, H. M., Butz, N., Vandamme, Th. F. (2002) Pulmonary drug delivery systems: recent developments and prospects. Crit. Rev. Ther. Drug Carrier Syst. 19, 425–498.

    Article  CAS  Google Scholar 

  10. Garcia-Contreras, L., Morcol, T., Bell, S. J. D., Hickey, A. J. (2003) Evaluation of novel particles as pulmonary delivery systems for insulin in rats. AAPS PharmSci. 5(2), Article 9.

    Google Scholar 

  11. Leach, C. L., Patton, J. S., Perkins, K. M., Kuo, M., Bueche, B., Guo, L., Bentley, M. D., (2002) PEG-insulin delivered by the pulmonary route provides prolonged systemic activity compared with insulin alone. Paper presented at 2002 AAPS meeting and exposition, Toronto, Ont., Canada, Nov. 10–14, 2002.

    Google Scholar 

  12. 12. Kwon, J. H., Lee, B. H., Lee, J. J., Kim, C. W. (2004) Insulin microcrystal suspension as a long acting formulation for pulmonary delivery. Eur. J. Pharm. Sci. 22, 107–116.

    Article  CAS  Google Scholar 

  13. 13. Bennett, D. B., Tyson, E., Mah, S., de Groot, J. S., Hedge, J. S., Jerao, S., Teitelbaum, Z. (1994) Sustained delivery of detirelix after pulmonary administration of liposomal formulations. J. Control. Release 32, 27–35.

    Article  CAS  Google Scholar 

  14. 14. Hinds, K. D., Kim, S. W. (2002) Effects of PEG conjugation on insulin properties. Adv. Drug Deliv. Rev. 54, 505–530.

    Article  CAS  Google Scholar 

  15. 15. Kim, H. K., Chung, H. J., Park, T. J. (2006) Biodegradable polymeric microspheres with open/closed pores for sustained release of human growth hormone. J. Control. Release 112, 167–174.

    Article  CAS  Google Scholar 

  16. 16. Wang, J., Chua, K. M., Wang, C. H. (2004) Stabilization and encapsulation of human immunoblobulin G into biodegradable microspheres. J. Control. Release 271, 92–101.

    CAS  Google Scholar 

  17. 17. Sharma, A., Sharma, U. S. (1997) Liposomes in drug delivery: progress and limitations. Int. J. Pharm. 154, 123–140.

    Article  CAS  Google Scholar 

  18. 18. Niven, R. W., Speer, M., Schreier, H. (1991) Nebulization of liposomes. II. The effects of size and modelling of solute release profiles. Pharm. Res. 8, 217–221.

    Article  CAS  Google Scholar 

  19. 19. Allen T. M. (1998) Liposomal drug formulations. Rationale for development and what we can expect for the future. Drug 56, 747–756.

    Article  Google Scholar 

  20. 20. Labiris, N. R., Dolovich, M. B. (2002) Pulmonary drug delivery. Part II: The role of inhalation delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol. 56, 600–612.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Shoyele, S.A. (2008). Controlling the Release of Proteins/Peptides via the Pulmonary Route. In: Jain, K.K. (eds) Drug Delivery Systems. Methods in Molecular Biology™, vol 437. Humana Press. https://doi.org/10.1007/978-1-59745-210-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-210-6_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-891-1

  • Online ISBN: 978-1-59745-210-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics