Skip to main content

Fractionation of Subcellular Membrane Vesicles of Epithelial and Nonepithelial Cells by OptiPrep™ Density Gradient Ultracentrifugation

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 440))

Summary

Density gradient ultracentrifugation (DGUC) is widely used for physical isolation (enrichment rather than purification) of subcellular membrane vesicles. It has been a valuable tool to study specific subcellular localization and dynamic trafficking of proteins. While sucrose has been the main component of density gradients, a few years ago synthetic OptiPrep (iodixanol) began being used for separation of organelles because of its iso-osmotic property. Here, we describe a detailed protocol for density gradient fractionation of various mammalian subcellular vesicles, including endoplasmic reticulum (ER), Golgi apparatus, endosomes, and lipid rafts, as well as apical and basolateral membranes of polarized epithelial cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. 1. Ngsee, J.K., Trimble, W.S., Elferink, L.A., et al. (1990) Molecular analysis of proteins associated with the synaptic vesicle membrane. Cold Spring Harb. Symp. Quant. Biol. 55, 111–118.

    CAS  PubMed  Google Scholar 

  2. 2. Li, X., and Sze, H. (1999) A 100 kDa polypeptide associates with the V0 membrane sector but not with the active oat vacuolar H(+)-ATPase, suggesting a role in assembly. Plant J. 17, 19–30.

    Article  PubMed  Google Scholar 

  3. 3. Huber, L.A., Pfaller, K., and Vietor, I. (2003) Organelle proteomics: implications for subcellular fractionation in proteomics. Circ. Res. 92, 962–968.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Gutwein, P., Stoeck, A., Riedle, S., et al. (2005) Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin. Cancer Res. 11, 2492–2501.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Ford, T., Graham, J., and Rickwood, D. (1994) Iodixanol: a nonionic iso-osmotic centrifugation medium for the formation of self-generated gradients. Anal. Biochem. 220, 360–366.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Graham, J., Ford, T., and Rickwood, D. (1994) The preparation of subcellular organelles from mouse liver in self-generated gradients of iodixanol. Anal. Biochem. 220, 367–373.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Li, X., Galli, T., Leu, S., et al. (2001) Na+-H+ exchanger 3 (NHE3) is present in lipid rafts in the rabbit ileal brush border: a role for rafts in trafficking and rapid stimulation of NHE3. J. Physiol. 537, 537–552.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Li, X., Leu, S., Cheong, A., et al. (2004) Akt2, phosphatidylinositol 3-kinase, and PTEN are in lipid rafts of intestinal cells: role in absorption and differentiation. Gastroenterology 126, 122–135.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Janecki, A.J., Montrose, M.H., Tse, C.M., de Medina, F. S., Zweibaum, A., and Donowitz, M. (1999) Development of an endogenous epithelial Na(+)/H(+) exchanger (NHE3) in three clones of caco-2 cells. Am. J. Physiol. 277, G292–G305.

    CAS  PubMed  Google Scholar 

  10. 10. Cohen, M.E., Wesolek, J., McCullen, J., et al. (1991) Carbachol- and elevated Ca(2+)-induced translocation of functionally active protein kinase C to the brush border of rabbit ileal Na+ absorbing cells. J. Clin. Invest. 88, 855–863.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Simons, K., and Toomre, D. (2000) Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Simons, K., and Vaz, W.L. (2004) Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Brown, D.A. (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiol. (Bethesda) 21, 430–439.

    CAS  Google Scholar 

  14. 14. Lusa, S., Blom, T.S., Eskelinen, E.L., et al. (2001) Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane. J. Cell Sci. 114, 1893–1900.

    CAS  PubMed  Google Scholar 

  15. 15. Lafont, F., Verkade, P., Galli, T., Wimmer, C., Louvard, D., and Simons, K. (1999) Raft association of SNAP receptors acting in apical trafficking in Madin–Darby canine kidney cells. Proc. Natl. Acad. Sci. U. S. A. 96, 3734–3738.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Bagnat, M., Keranen, S., Shevchenko, A., Shevchenko, A., and Simons, K. (2000) Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc. Natl. Acad. Sci. U. S. A. 97, 3254–3259.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Fullekrug, J., and Simons, K. (2004) Lipid rafts and apical membrane traffic. Ann. N. Y. Acad. Sci. 1014, 164–169.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by in part by the National Institutes of Health, NIDDK grants KO1-DK62264, RO1-DK26523, RO1-DK61765, PO1-DK44484, PO1-DK72084, and R24-DK64388 (Hopkins Digestive Diseases Basic Research Development Core Center); Broad Medical Research Program grant (IBD-0119R2); and the Hopkins Center for Epithelial Disorders. We thank Elsevier Inc. for permission to reuse the figures originally published in its journal Gastroenterology.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, X., Donowitz, M. (2008). Fractionation of Subcellular Membrane Vesicles of Epithelial and Nonepithelial Cells by OptiPrep™ Density Gradient Ultracentrifugation. In: Ivanov, A.I. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 440. Humana Press. https://doi.org/10.1007/978-1-59745-178-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-178-9_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-865-2

  • Online ISBN: 978-1-59745-178-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics