Skip to main content

FRAP Analysis of Secretory Granule Lipids and Proteins in the Sea Urchin Egg

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 440))

Summary

Cortical granules of the sea urchin are secreted at fertilization in response to sperm fusion. Approximately 15,000 of these vesicles are tightly tethered to the cytoplasmic face of the egg plasma membrane prior to insemination such that the vesicle–plasma membrane complex may be isolated and manipulated in vitro. Furthermore, this complex remains fusion competent and can thus be used for in vitro biochemical studies of secretion on a per-vesicle or a population scale. We document approaches to study the dynamics of membrane lipids and proteins in these secretory vesicles. Their large size (1.3-μm diameter), vast number, and ease of manipulation enable several unique approaches to study general secretion mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. 1. Wessel, G.M., Brooks, J.M., Green, E., et al. (2001) The biology of cortical granules. Int. Rev. Cytol. 209, 117–206.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Wong, J.L., and Wessel, G.M. (2006) Defending the zygote: search for the ancestral animal block to polyspermy. Curr. Top. Dev. Biol. 72, 1–151.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Just, E.E. (1919) The fertilization reaction in Echinarachinus parma. Biol. Bull. 36, 1–10.

    Article  CAS  Google Scholar 

  4. 4. Rothschild, L. (1952) The fertilization reaction in the sea urchin. J. Exp. Biol. 30, 57–67.

    Google Scholar 

  5. 5. Patel, S. (2004) NAADP-induced ca2+ release—a new signalling pathway. Biol. Cell 96, 19–28.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Runft, L.L., Jaffe, L.A., and Mehlmann, L.M. (2002) Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237–254.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Santella, L., Lim, D., and Moccia, F. (2004) Calcium and fertilization: the beginning of life. Trends Biochem. Sci. 29, 400–408.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Epel, D., Patton, C., Wallace, R.W., and Cheung, W.Y. (1981) Calmodulin activates nad kinase of sea urchin eggs: an early event of fertilization. Cell 23, 543–549.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Shen, S.S., and Burgart, L.J. (1986) 1,2-Diacylglycerols mimic phorbol 12-myristate 13-acetate activation of the sea urchin egg. J. Cell Physiol. 127, 330–340.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Dube, F., Schmidt, T., Johnson, C.H., and Epel, D. (1985) The hierarchy of requirements for an elevated intracellular ph during early development of sea urchin embryos. Cell 40, 657–666.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Grainger, J.L., Winkler, M.M., Shen, S.S., and Steinhardt, R.A. (1979) Intracellular pH controls protein synthesis rate in the sea urchine egg and early embryo. Dev. Biol. 68, 396–406.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Chandler, D.E. (1991) Multiple intracellular signals coordinate structural dynamics in the sea urchin egg cortex at fertilization. J. Electron Microsc. Tech. 17, 266–293.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Whitaker, M., and Larman, M.G. (2001) Calcium and mitosis. Semin. Cell Dev. Biol. 12, 53–58.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Vacquier, V.D. (1975) The isolation of intact cortical granules from sea urchin eggs: calcium ions trigger granule discharge. Dev. Biol. 43, 62–74.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Detering, N.K., Decker, G.L., Schmell, E.D., and Lennarz, W.J. (1977) Isolation and characterization of plasma membrane-associated cortical granules from sea urchin eggs. J. Cell Biol. 75, 899–914.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Wong, J.L., and Wessel, G.M. (2006) Rendezvin: an essential gene encoding independent, differentially-secreted egg proteins that organize the fertilization envelope proteome following self-association. Mol. Biol. Cell 17, 5241–5252.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Walker, C.W., Harrington, L.M., Lesser, M.P., and Fagerberg, W.R. (2005) Nutritive phagocyte incubation chambers provide a structural and nutritive microenvironment for germ cells of Strongylocentrotus droebachiensis, the green sea urchin. Biol. Bull. 209, 31–48.

    Article  PubMed  Google Scholar 

  18. 18. Shen, S.S. (1995) Mechanisms of calcium regulation in sea urchin eggs and their activities during fertilization. Curr. Top. Dev. Biol. 30, 63–101.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Tahara, M., Coorssen, J.R., Timmers, K., et al. (1998) Calcium can disrupt the snare protein complex on sea urchin egg secretory vesicles without irreversibly blocking fusion. J. Biol. Chem. 273, 33667–33673.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Jahn, R., and Scheller, R.H. (2006) Snares—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Pelham, H.R. (2001) Snares and the specificity of membrane fusion. Trends Cell Biol. 11, 99–101.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Bonifacino, J.S., and Glick, B.S. (2004) The mechanisms of vesicle budding and fusion. Cell 116, 153–166.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Sudhof, T.C. (2004) The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547.

    Article  PubMed  Google Scholar 

  24. 24. Zerial, M., and McBride, H. (2001) Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Conner, S., Leaf, D., and Wessel, G. (1997) Members of the snare hypothesis are associated with cortical granule exocytosis in the sea urchin egg. Mol. Reprod. Dev. 48, 106–118.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Leguia, M., Conner, S., Berg, L., and Wessel, G.M. (2006) Synaptotagmin i is involved in the regulation of cortical granule exocytosis in the sea urchin. Mol. Reprod. Dev. 73, 895–905.

    Article  CAS  PubMed  Google Scholar 

  27. 27. Wong, J.L., Koppel, D.E., Cowan, A.E., and Wessel, G.M. (2007) Membrane hemifusion is a stable intermediate of exocytosis. Dev. Cell 12, 653–659.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Wessel, G.M., and Vacquier, V. (2004) Isolation of organelles and components from sea urchin eggs and embryos, in Development of Sea Urchins, Ascidians and Other Non-vertebrate Deuterostomes: Experimental Approaches (C.A. Ettensohn, G.M. Wessel, and G.A. Wray, eds.), Elsevier Academic Press, San Diego, CA, pp. 491–522.

    Chapter  Google Scholar 

  29. 29. Foltz, K.R., Adams, N.L., and Runft, L.L. (2004) Echinoderm eggs and embryos: procurement and culture, in Development of Sea Urchins, Ascidians and Other Non-vertebrate Deuterostomes: Experimental Approaches (C.A. Ettensohn, G.M. Wessel, and G.A. Wray, eds.), Elsevier Academic Press, San Diego, CA, pp. 39–74.

    Chapter  Google Scholar 

  30. 30. Harlow, E., and Lane, D. (1999) Using Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  31. 31. Boettger, S.A., Walker, C.W., and Unuma, T. (2004) Care and maintenance of adult echinoderms, in Development of Sea Urchins, Ascidians and Other Non-vertebrate Deuterostomes: Experimental Approaches (C.A. Ettensohn, G.M. Wessel, and G.A. Wray, eds.), Elsevier Academic Press, San Diego, CA, pp. 17–38.

    Chapter  Google Scholar 

  32. 32. Cowan, A.E., Olivastro, E.M., Koppel, D.E., Loshon, C.A., Setlow, B., and Setlow, P. (2004) Lipids in the inner membrane of dormant spores of bacillus species are largely immobile. Proc. Natl. Acad. Sci. U. S. A. 101, 7733–7738.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Ann E. Cowan and Dennis E. Koppel at University of Connecticut Health Science Center for many productive conversations about FRAP techniques. Grants from the National Institutes of Health and National Science Foundation supported this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wong, J.L., Wessel, G.M. (2008). FRAP Analysis of Secretory Granule Lipids and Proteins in the Sea Urchin Egg. In: Ivanov, A.I. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 440. Humana Press. https://doi.org/10.1007/978-1-59745-178-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-178-9_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-865-2

  • Online ISBN: 978-1-59745-178-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics