Skip to main content

Methods for the Study of Redox-Mediated Changes in p53 Structure and Function

  • Protocol
  • First Online:
  • 1025 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 476))

Abstract

It is now generally accepted that both the structure and function of a number of specific transcriptional factors, including p53 (1), are subject to redox regulation in cells in which these factors are expressed. The present chapterdescribes methods for the analysis of redox changes in the structure of p53 and the effect of redox modulation on binding of p53 to a DNA consensus sequence. In addition, methods are described for studying the effect of redox perturbations of cells on the functioning of p53 in the cell cycle and in apoptosis. By studying the effect of redox agents on p53, we have concluded that p53 is subject to structural redox modulation and that this modulation affects the functional ability of the protein to bind to DNA, to cause cell cycle arrest, and to trigger apoptosis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hainaut, P. and Mann, K. (2001). Zinc binding and redox control of p53 structure and function. Antioxid Redox Signal 3, 611–623.

    Article  PubMed  CAS  Google Scholar 

  2. Hainaut, P. and Milner, J. (1993). Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res 53, 4469–4473.

    PubMed  CAS  Google Scholar 

  3. Rainwater, R., Parks, D., Anderson, M. E., Tegtmeyer, P., and Mann, K. (1995). Role of cysteine residues in regulation of p53 function. Mol Cell Biol 15, 3892–3903.

    PubMed  CAS  Google Scholar 

  4. Cho, Y., Gorina, S., Jeffrey, P. D., and Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor DNA complex: understanding tumorigenic mutations. Science 265, 346–355.

    Article  PubMed  CAS  Google Scholar 

  5. Powis, G. and Montfort, W. R. (2001). Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol 41, 261–295.

    Article  PubMed  CAS  Google Scholar 

  6. Stenger, J. E., Mayr, G. A., Mann, K., and Tegtmeyer, P. (1992). Formation of stable p53 homotetramers and multiples of tetramers. Mol Carcinogenesis 5, 102–106.

    Article  CAS  Google Scholar 

  7. Simanis, V. and Lane, D. P. (1985). An immunoaffinity purification procedure for SV40 large T antigen. Virology 144, 88–100.

    Article  PubMed  CAS  Google Scholar 

  8. Funk, W. D., Pak, D. T., Karas, R. H., Wright, W. E., and Shay, J. W. (1992). A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Bio. 12, 2866–2871.

    CAS  Google Scholar 

  9. Hupp, T. R., Meek, D. W., Midgley, C. A., and Lane, D. P. (1992). Regulation of the specific DNA binding function of p53. Cell 71, 875–886.

    Article  PubMed  CAS  Google Scholar 

  10. Meier, T. and Issels, R. D. (1995). Degradation of 2-(3-aminopropylamino)-ethanethiol (WR-1065) by Cu-dependent amine oxidases and influence on glutathione status of Chinese hamster ovary cells. Biochem Pharmacol 50, 489–496.

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi, N. and Hirose, M. (1990). Determination of sulfhydryl groups and disulfide bonds in a protein by polyacrylamide gel electrophoresis. Anal Biochem 188, 359–365.

    Article  PubMed  CAS  Google Scholar 

  12. Bersani, N. A., Merwin, J. R., Lopez, N. I., Pearson, G. D., and Merrill, G. F. (2002). Protein electrophoretic mobility shift assay to monitor redox state of thioredoxin in cells. Methods Enzymol. 347, 317–326.

    Article  PubMed  CAS  Google Scholar 

  13. Mann, K. and Hainaut, P. (2005). Aminothiol WR1065 induces differential gene expression in the presence of wild-type p53. Oncogene 24, 3964–3975.

    Article  PubMed  CAS  Google Scholar 

  14. Parks, D., Bolinger, R., and Mann, K. (1997). Redox state regulates binding of p53 to sequence-specific DNA, but not to non-specific or mismatched DNA. Nucl Acids Res 25, 1289–1295.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Robin Rainwater and Dorothy Parks for their significant contributions (3, 14) to Fig. 9.1 of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mann, K. (2008). Methods for the Study of Redox-Mediated Changes in p53 Structure and Function. In: Hancock, J.T. (eds) Redox-Mediated Signal Transduction. Methods in Molecular Biology™, vol 476. Humana Press. https://doi.org/10.1007/978-1-59745-129-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-129-1_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-842-3

  • Online ISBN: 978-1-59745-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics