Skip to main content

Analysis of Redox Relationships in the Plant Cell Cycle: Determinations of Ascorbate, Glutathione and Poly (ADPribose) Polymerase (PARP) in Plant Cell Cultures

  • Protocol
  • First Online:
Book cover Redox-Mediated Signal Transduction

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 476))

Abstract

Reactive oxygen species (ROS) and low molecular weight antioxidants, such as glutathione and ascorbate, are powerful signaling molecules that participate in the control of plant growth and development, and modulate progression through the mitotic cell cycle. Enhanced reactive oxygen species accumulation or low levels of ascorbate or glutathione cause the cell cycle to arrest and halt progression especially through the G1 checkpoint. Plant cell suspension cultures have proved to be particularly useful tools for the study of cell cycle regulation. Here we provide effective and accurate methods for the measurement of changes in the cellular ascorbate and glutathione pools and the activities of related enzymes such poly (ADP-ribose) polymerase during mitosis and cell expansion, particularly in cell suspension cultures. These methods can be used in studies seeking to improve current understanding of the roles of redox controls on cell division and cell expansion.

Keywords

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menges, M. and Murray, J. A. (2002) Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J 2, 203–212.

    Article  Google Scholar 

  2. Nagata, T., Nemoto, Y., and Hasezawa, S. (1992). Tobacco BY-2 cell line as the ‘HeLa’ cell in the cell biology of higher plants. Int Rev Cytol 132, 1–30.

    Article  CAS  Google Scholar 

  3. May, M. J. and Leaver, C. J. (1993). Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol 103, 621–627.

    PubMed  CAS  Google Scholar 

  4. Meijer, M. and Murray, J. A.H. (2001) Cell cycle controls and the development of plant form. Curr Opin Plant Biol 4, 44–49.

    Article  PubMed  CAS  Google Scholar 

  5. Dewitte, W. and Murray, J. A.H. (2003) The plant cell cycle. Ann Rev Plant Biol 54, 235–264.

    Article  CAS  Google Scholar 

  6. Riechheld, J. P., Vernoux, T., Lardon, F., Vanmontagu, M., and Inze, D. (1999) Specific checkpoints regulate cell cycle progression in response to oxidative stress. Plant J 17, 647–656.

    Article  Google Scholar 

  7. Tiwari, B. S., Belenghi, B., and Levine, A. (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128, 1271–1281.

    Article  PubMed  CAS  Google Scholar 

  8. Baxter, C. J., Redestig, H., Schauer, N., Repsilber, D., Patil, K. R., Nielsen, J., Selbig, J., Liu, J., Fernie, A. R., and Sweetlove, L. J. (2007) The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol 143, 312–325.

    Article  PubMed  CAS  Google Scholar 

  9. Desikan, R., Reynolds, A., Hancock, J. T., and Neill, S. J. (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem J 330, 115–120.

    PubMed  CAS  Google Scholar 

  10. Desikan, R., A.-H.-Mackerness, S., Hancock, J. T., and Neill, S. J. (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127,159–172.

    Article  Google Scholar 

  11. Vandenabeele, S., Van Der Kelen, K., Dat, J., Gadjev, I., Boonefaes, T., Morsa, S., Rottiers, P., Slooten, L., Van Montagu, M., Zabeau, M., Inze, D., and Van Breusegem, F. (2002) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA 100, 16113–16118.

    Article  Google Scholar 

  12. Foyer, C. H. and Noctor, G. (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28, 1056–1071.

    Article  CAS  Google Scholar 

  13. Foyer, C. H. and Noctor, G. (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17, 1866–1875.

    Article  CAS  Google Scholar 

  14. Foyer, C. H. and Noctor, G. (2000). Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146, 359–388.

    Article  CAS  Google Scholar 

  15. Davey, M. W., Gilot, C., Persiau, G., Østergaard, J., Han, Y., Bauw, G. C., and Van Montagu, M. C. (1999) Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiol 121, 535–544.

    Article  PubMed  CAS  Google Scholar 

  16. Wheeler, G. L., Jones, M. A., and Smirnoff, N. (1998). The biosynthetic pathway of vitamin C in higher plants. Nature 393, 365–369.

    Article  PubMed  CAS  Google Scholar 

  17. Wolucka, B. A., Goossens, A., and Inzé, D. (2005) Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot 56, 2527–2538.

    Article  PubMed  CAS  Google Scholar 

  18. Green, M. A. and Fry, S. C. (2004) Degradation of vitamin C in plant cells via enzymic hydrolysis of 4-O-oxalyl-l-threonate. Nature 433, 83–87.

    Article  PubMed  Google Scholar 

  19. Griffith, O. W. and Meister, A. (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n butyl homocysteine sulfoximine). J Biol Chem 254, 7558–7560.

    PubMed  CAS  Google Scholar 

  20. Vernoux, T., Wilson, R. C., Seeley, K. A., Reichheld, J. P., Muroy, S., Brown, S., Maughan, S. C., Cobbett, C. S., Van Montagu, M., Inzé, D., May, M. J., and Sung Z. R. (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12, 97–110.

    Article  PubMed  CAS  Google Scholar 

  21. Liso, R., Innocenti, A. M., Bitonti, M. B., and Arrigoni, O. (1988) Ascorbic acid – induced progression of quiescent centre cells from G1 to S phase. New Phytol 110, 469–471.

    Article  CAS  Google Scholar 

  22. De Gara, L. and Tommasi, F. (1999) Ascorbate redox enzymes: a network of reactions involved in plant development. Recent Res Dev Phytochem 3, 1–15.

    Google Scholar 

  23. de Pinto M. C., Francis D., and De Gara L. (1999) The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209, 90–97.

    Article  PubMed  Google Scholar 

  24. de Pinto, M. C., Tommasi, F., and De Gara, L., (2000) Enzymes of the ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tobacco Bright Yellow 2. Plant Physiol Biochem 38, 541–550.

    Article  Google Scholar 

  25. Potters, G., De Gara, L., Asard, H., and Horemans, N. (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol Biochem 40, 537–548.

    Article  CAS  Google Scholar 

  26. Potters, G., Horemans, N., Bellone, S., Caubergs, R. J., Trost, P., Guisez, Y., and Asard, H. (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol 134, 1479–1487.

    Article  CAS  Google Scholar 

  27. Cheng, J.-C., Seeley, K. A., and Sung, Z. R. (1995) RML7 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol 107, 365–376.

    Article  PubMed  CAS  Google Scholar 

  28. Carol, R. J., Takeda, S., Linstead, P., Durrant, M. C., Kakesova, H., Derbyshire, P., Drea, S., Zarsky, V., and Dolan, L. (2005) A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438, 1013–1016.

    Article  PubMed  CAS  Google Scholar 

  29. Jiang, K., Meng, Y. L., and Feldman, L. J. (2003) Quiescent center formation in maize roots is associated withan auxin-regulated oxidising environment. Development 130, 1429–1438.

    Article  PubMed  CAS  Google Scholar 

  30. Jiang, K., Ballinger, T., Li, D., Zhang, S., and Feldman, L. A. (2006) Role for mitochondria in the establishment and maintenance of the maize root quiescent center. Plant Physiol 140, 1118–1125.

    Article  PubMed  CAS  Google Scholar 

  31. Bailly, C., Audigier, C., Ladonne, F., Wagner, M. H., Coste, F., Corbineau, F., and Come, D. (2001) Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. J Exp Bot 52, 701–708.

    PubMed  CAS  Google Scholar 

  32. De Gara, L., de Pinto, M. C., Moliterni, V. M., and D'Egidio, M. G. (2003). Redox regulation and storage processes during maturation in kernels of Triticum durum. J Exp Bot 54, 249–258.

    Article  PubMed  Google Scholar 

  33. Tommasi, F., Paciolla, C., de Pinto, M. C., and De Gara, L. (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Exp Bot 52, 1647–1654.

    Article  PubMed  CAS  Google Scholar 

  34. Córdoba-Pedregosa, M. C., Cordoba, F. Villalba, J. M., and Gonzáles-Reyes J. A. (2003) Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate-related enzymes activities in onion roots. Plant Physiol 131, 1–10.

    Article  Google Scholar 

  35. de Pinto, M. C. and De Gara, L. (2004) Changes in the ascorbate metabolism of both apoplastic and symplastic spaces are involved in cell differentiation. J Exp Bot 55, 2559–2569.

    Article  PubMed  Google Scholar 

  36. Dumville, J. C. and Fry, S. C. (2003) Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217, 951–961.

    Article  PubMed  CAS  Google Scholar 

  37. Pignocchi, C., Fletcher, J. E., Barnes, J., and Foyer, C. H. (2003) The function of ascorbate oxidase (AO) in tobacco (Nicotiana tabacum L.). Plant Physiol 132, 1631–1641.

    Article  PubMed  CAS  Google Scholar 

  38. Apel, K., and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann. Rev Plant Biol 55, 373–399.

    Article  CAS  Google Scholar 

  39. De Block, M., Verduyn, C., De Brouwer, D., and Cornelissen, M. (2004) Generating stress tolerant crops by economizing energy consumption. Pflanzenschutz-Nachrichten Bayer 57, 105–110.

    Google Scholar 

  40. Baker, C. J., Orlandi, E. W., and Mock, N. M. (1993) Harpin, an elicitor of hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol 102, 1341–1344.

    PubMed  CAS  Google Scholar 

  41. Andi, S., Taguchi, F., Toyoda, K., Shiraishi, T., and Ichinose, Y. (2001) Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant Cell Physiol 42, 446–449.

    Article  PubMed  CAS  Google Scholar 

  42. Popham, P., Pike, S., and Novacky, A. (1995) The effects of harpin from Erwinia amylovora on the plasmalemma of suspension cultured tobacco cells. Physiol Mol Plant Pathol 47, 39–50.

    Article  CAS  Google Scholar 

  43. Xie, Z. and Chen, Z. (2000) Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Mol Plant-Microbe Interact 13, 183–190.

    Article  PubMed  CAS  Google Scholar 

  44. De Gara, L., de Pinto, M. C., and Tommasi, F. (2003)The antioxidant system vis à vis reactive oxygen species during plant pathogen interaction. Plant Physiol Biochem 41, 863–870.

    Article  Google Scholar 

  45. Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9, 490–498.

    Article  PubMed  CAS  Google Scholar 

  46. de Pinto, M. C., Tommasi, F., and De Gara, L. (2002) Changes in the antioxidant systems as part of the signalling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco BY-2 cells. Plant Physiol 130, 698–708.

    Article  PubMed  Google Scholar 

  47. de Pinto, M. C., Paradiso, A., Leonetti P., and De Gara L., (2006) Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant J 48, 784–795.

    Article  PubMed  Google Scholar 

  48. Vacca, R. A., de Pinto, M. C., Valenti, D., Passerella, S., Marra, E., and De Gara, L. (2004) Reactive oxygen species production, impairment of glucose oxidation and cytosolic ascorbate peroxidase are early events in heat-shock induced programmed cell death in tobacco BY-2 cells. Plant Physiol 134, 1100–1112.

    Article  PubMed  CAS  Google Scholar 

  49. Beligni, M. V., Fath, A., Bethke, P. C., Lamattina, L., and Jones, R. L. (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129, 1642–1650.

    Article  PubMed  CAS  Google Scholar 

  50. Foyer, C. H., Rowell, J., and Walker, D. A. (1983). Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157, 239–244.

    Article  CAS  Google Scholar 

  51. Noctor, G. and Foyer, C. H. (1998). Simultaneous measurement of foliar glutathione, γ-glutamyl cysteine and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal Biochem 264, 98–110.

    Article  PubMed  CAS  Google Scholar 

  52. Bartoli C. G., Pastori, G. M., and Foyer, C. H. (2000). Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complex III and IV. Plant Physiol 123: 335–343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Foyer, C.H., Pellny, T.K., Locato, V., De Gara, L. (2008). Analysis of Redox Relationships in the Plant Cell Cycle: Determinations of Ascorbate, Glutathione and Poly (ADPribose) Polymerase (PARP) in Plant Cell Cultures . In: Hancock, J.T. (eds) Redox-Mediated Signal Transduction. Methods in Molecular Biology™, vol 476. Humana Press. https://doi.org/10.1007/978-1-59745-129-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-129-1_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-842-3

  • Online ISBN: 978-1-59745-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics