Skip to main content

Redox Regulation and Trapping Sulphenic Acid in the Peroxide Sensitive Human Mitochondrial Branched Chain Aminotransferase

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 476))

Abstract

The human branched chain aminotransferase enzymes are key regulators of glutamate metabolism in the brain and are among a growing number of redox-sensitive proteins. Studies that use thiol-specific reagents and electrospray ionization mass spectrometry demonstrate that the mitochondrial BCAT enzyme has a redox-active CXXC center, which on oxidation forms a disulfide bond (RSSR), via a cysteine sulfenic acid intermediate. Mechanistic details of this redox regulation were revealed by the use of mass spectrometry and dimedone modification. We discovered that the thiol group at position C315 of the CXXC motif acts a redox sensor, whereas the thiol group at position C318 permits reversible regulation by forming an intrasubunit disulphide bond. Because of their roles in redox regulation and catalysis, there is a growing interest in cysteine sulphenic acids. Therefore, development of chemical tags/methods to trap these transient intermediates is of immense importance.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol Rev 82, 47–95.

    PubMed  CAS  Google Scholar 

  2. Di Simplicio, P., Franconi, F., Frosali, S., and Di Giuseppe, D. (2003). Thiolation and nitrosation of cysteines in biological fluids and cells. Amino Acids 25, 323–339.

    Article  PubMed  Google Scholar 

  3. Poole, L. B., Karplus, P. A., and Claiborne, A. (2004). Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44, 325–347.

    Article  PubMed  CAS  Google Scholar 

  4. Claiborne, A., Yeh, J. I., Mallett, T. C., Luba, J., Crane, E. J., 3rd, Charrier, V., and Parsonage, D. (1999). Protein-sulfenic acids: Diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38, 15407–15416.

    Article  PubMed  CAS  Google Scholar 

  5. Aslund, F., Zheng, M., Beckwith, J., and Storz, G. (1999). Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA 96, 6161–6165.

    Article  PubMed  CAS  Google Scholar 

  6. Lee, C., Lee, S. M., Mukhopadhyay, P., Kim, S. J., Lee, S. C., Ahn, W. S., Yu, M. H., Storz, G., and Ryu, S. E. (2004). Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat Struct Mol Biol 11, 1179–1185.

    Article  PubMed  CAS  Google Scholar 

  7. Denu, J. M., and Tanner, K. G. (1998). Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: Evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633–5642.

    Article  PubMed  CAS  Google Scholar 

  8. Chiarugi, P., Fiaschi, T., Taddei, M. L., Talini, D., Giannoni, E., Raugei, G., and Ramponi, G. (2001). Two vicinal cysteines confer a peculiar redox regulation to low molecular weight protein tyrosine phosphatase in response to platelet-derived growth factor receptor stimulation. J Biol Chem 276, 33478–33487.

    Article  PubMed  CAS  Google Scholar 

  9. Dixon, D. P., Fordham-Skelton, A. P., and Edwards, R. (2005). Redox regulation of a soybean tyrosine-specific protein phosphatase. Biochemistry 44, 7696–7703.

    Article  PubMed  CAS  Google Scholar 

  10. Ellis, H. R., and Poole, L. B. (1997). Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Biochemistry 36, 15013–15018.

    Article  PubMed  CAS  Google Scholar 

  11. Poole, L. B. and Ellis, H. R. (2002). Identification of cysteine sulfenic acid in AhpC of alkyl hydroperoxide reductase. Methods Enzymol 348, 122–136.

    Article  PubMed  CAS  Google Scholar 

  12. Conway, M. E., Poole, L. B., and Hutson, S. M. (2004). Roles for cysteine residues in the regulatory CXXC motif of human mitochondrial branched chain aminotransferase enzyme. Biochemistry 43, 7356–7364.

    Article  PubMed  CAS  Google Scholar 

  13. Eaton, P., Wright, N., Hearse, D. J., and Shattock, M. J. (2002). Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. J Mol Cell Cardiol 34, 1549–1560.

    Article  PubMed  CAS  Google Scholar 

  14. Poole, L. B., Zeng, B. B., Knaggs, S. A., Yakubu, M., and King, S. B. (2005). Synthesis of chemical probes to map sulfenic acid modifications on proteins. Bioconjug Chem 16, 1624–1628.

    Article  PubMed  CAS  Google Scholar 

  15. Conway, M. E., Yennawar, N., Wallin, R., Poole, L. B., and Hutson, S. M. (2002). Identification of a peroxide-sensitive redox switch at the CXXC motif in the human mitochondrial branched chain aminotransferase. Biochemistry 41, 9070–9078.

    Article  PubMed  CAS  Google Scholar 

  16. Baker, L. M., and Poole, L. B. (2003). Catalytic mechanism of thiol peroxidase from Escherichia coli sulfenic acid formation and over oxidation of essential CYS61. J. Biol. Chem. 278, 9203–9211.

    Article  PubMed  CAS  Google Scholar 

  17. Yennawar, N. H., Conway, M. E., Yennawar, H. P., Farber, G. K., and Hutson, S. M. (2002). Crystal structures of human mitochondrial branched chain aminotransferase reaction intermediates: Ketimine and pyridoxamine phosphate forms. Biochemistry 41, 11592–11601.

    Article  PubMed  CAS  Google Scholar 

  18. Yennawar, N. H., Islam, M. M., Conway, M., Wallin, R., and Hutson, S. M. (2006). Human mitochondrial branched chain aminotransferase isozyme: Structural role of the CXXC center in catalysis. J. Biol. Chem. 281, 39660–39671.

    Article  PubMed  CAS  Google Scholar 

  19. Conway, M. E., Yennawar, N., Wallin, R., Poole, L. B., and Hutson, S. M. (2003). Human mitochondrial branched chain aminotransferase: Structural basis for substrate specificity and role of redox active cysteines. Biochim. Biophys. Acta 1647, 61–65.

    PubMed  CAS  Google Scholar 

  20. Davoodi, J., Drown, P. M., Bledsoe, R. K., Wallin, R., Reinhart, G. D., and Hutson, S. M. (1998). Overexpression and characterization of the human mitochondrial and cytosolic branched-chain aminotransferases. J. Biol. Chem. 273, 4982–4989.

    Article  PubMed  CAS  Google Scholar 

  21. Schaffner, W. and Weissmann, C. (1973). A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal. Biochem. 56, 502–514.

    Article  PubMed  CAS  Google Scholar 

  22. Hall, T. R., Wallin, R., Reinhart, G. D., and Hutson, S. M. (1993). Branched chain aminotransferase isoenzymes. Purification and characterization of the rat brain isoenzyme. J. Biol. Chem. 268, 3092–3098.

    PubMed  CAS  Google Scholar 

  23. Riddles, P. W., Blakeley, R. L., and Zerner, B. (1979). Ellman's reagent: 5,5′-dithiobis(2-nitrobenzoic acid)--a re-examination. Anal. Biochem. 94, 75–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hutson, S.M., Poole, L.B., Coles, S., Conway, M.E. (2008). Redox Regulation and Trapping Sulphenic Acid in the Peroxide Sensitive Human Mitochondrial Branched Chain Aminotransferase. In: Hancock, J.T. (eds) Redox-Mediated Signal Transduction. Methods in Molecular Biology™, vol 476. Humana Press. https://doi.org/10.1007/978-1-59745-129-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-129-1_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-842-3

  • Online ISBN: 978-1-59745-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics