Skip to main content

The Role of Redox in Signal Transduction

  • Protocol
  • First Online:
Book cover Redox-Mediated Signal Transduction

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 476))

Abstract

Functioning and efficient cell signaling is vital for the survival of cells. Over the course of many years, various components have been identified and recognized as crucial for the transduction of signals in cells. Many of the mechanisms allow for a relatively rapid switching of signals, on or off, with common examples being the G proteins and protein phosphorylation. However, recently it has become apparent that other modifications of amino acids are also important, including reactions with nitric oxide, for example, S-nitrosylation, and of particular relevance here, oxidation of cysteine residues. Such oxidation will be dependent on the redox status of the intracellular environment in which that protein resides, and this will in turn be dictated by the presence of pro-oxidants and antioxidants. Here, the chemistry of redox modification of amino acids is introduced, and a general overview of the role of redox in mediating signal transduction is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hancock, J. T. (1997) Superoxide, hydrogen peroxide and nitric oxide as signalling molecules: their production and role in disease. Br J Biomed Sci 54, 38–46.

    PubMed  CAS  Google Scholar 

  2. Dröge, W. (2002) Free radicals in physiological control of cell function. PhysiolRev, 82, 47–95.

    Google Scholar 

  3. Neill, S. J., Desikan, R., and Hancock, J. T. (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol, 5, 388–395.

    Article  CAS  Google Scholar 

  4. Colavitti, R., and Finkel, T. (2005) Reactive oxygen species as mediators of cellular senescence. IUBMB Life, 57, 277–281.

    Article  CAS  Google Scholar 

  5. Vanderauwera, S., Zimmermann, P., Rombauts, S., Vandenbeele, S., Langebartels, C., Gruissem, W., Inzé, D., and Van Breusegem, F. (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol, 139, 806–821.

    Article  CAS  Google Scholar 

  6. Ullrich, V., and Kissner, R. (2006) Redox signaling: bioinorganic chemistry at its best. J Inorg Biochem 100, 2079–2086.

    Article  PubMed  CAS  Google Scholar 

  7. Neill, S. J., Desikan, R., and Hancock, J. T. (2003) Nitric oxide signalling in plants. New Phytol 159, 11–35.

    Article  CAS  Google Scholar 

  8. Perazzolli, M., Romero-Puertas, M. C., and Delledonne, M. (2006) Modulation of nitric oxide bioactivity by plant haemoglobins. J Exp Bot 57, 479–488.

    Article  PubMed  CAS  Google Scholar 

  9. Salmeen, A., Anderson, J. N., Myers, M. P., Meng, T. C., Hinks, J. A., Tonks, N. K., and Barford, D. (2003) Redox regulation of protein tyrosine phosphatase 1B involves a novel sulfenyl-amide intermediate. Nature 423, 769–773.

    Article  PubMed  CAS  Google Scholar 

  10. Van Montfort, R. L., Congreve, M., Tisi, D., Carr, R., and Jhoti, H. (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423, 773–777.

    Article  PubMed  Google Scholar 

  11. Lindermayr, C., Saalbach, G., and Durner, J. (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137, 921–930.

    Article  PubMed  CAS  Google Scholar 

  12. Dixon, D. P., Skipsey, M., Grundy, N. M., and Edwards, R. (2005) Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiol 138, 2233–2244.

    Article  PubMed  CAS  Google Scholar 

  13. Hancock, J., Desikan, R., Harrison, J., Bright, J., Hooley, R., and Neill, S. (2006) Doing the unexpected: proteins involved in hydrogen peroxide perception. J Exp Bot 57, 1711–1718.

    Article  PubMed  CAS  Google Scholar 

  14. Cho, S.-H., Lee, C.-C., Ahn, Y., Kim, H., Yang, K.-S., and Lee, S.-R. (2004) Redox regulation of PTEN and protein tyrosine phosphatase in H2O2-mediated cell signalling. FEBS Lett 560, 7–13.

    Article  PubMed  CAS  Google Scholar 

  15. Desikan, R., Hancock, J. T., Bright, J., Harrison, J., Weir, I., Hooley, R., and Neill, S. J. (2005) A novel role for ETR1: hydrogen peroxide signalling in stomatal guard cells. Plant Physiol 137, 831–834.

    Article  PubMed  CAS  Google Scholar 

  16. Hancock, J. T., Henson, D., Nyirenda, M., Desikan, R., Harrison, J., Lewis, L., Hughes, J., and Neill, S. J. (2005) Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol Biochem 43, 828–835.

    Article  PubMed  CAS  Google Scholar 

  17. Lee, C., Lee, S. M., Mukhopadhyay, P., Kim, S. J., Lee, S.C., Ahn, W. S., Yu, M. H., Stroz, G., and Ryu, S. E. (2004) Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat Struct Mol Biol 11, 1179–1185.

    Article  PubMed  CAS  Google Scholar 

  18. Schürmann, P., and Jacquot, J. P. (2000) Plant thioredoxin systems revisited. Annu Rev Plant Phys 51, 371–400.

    Article  Google Scholar 

  19. Lemaire, S.D. (2004) The glutaredoxin family in oxygenic photosynthetic organisms. Photosynth Res, 79, 305–318.

    Article  CAS  Google Scholar 

  20. Collin, V., Lankemeyer, P., Miginiac-Maslow, M., Hirasawa, M., Knaff, D. B., Dietz, K. J., and Issakidis-Bourguet, E. (2004) Characterization of plastidial thioredoxins belonging to the new y-type. Plant Physiol 136, 4088–4095.

    Article  PubMed  CAS  Google Scholar 

  21. Rouhier, N., Gelhaye, E., Sautiere, P. E., Brun, A., Laurent, P., Tagu, D., Gerard, J., De Fay, E., Meyer, Y., and Jacquot, J. P. (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 127, 1299–1309.

    Article  PubMed  CAS  Google Scholar 

  22. Biteau, B., Labarre, J., and Toledano, M. B. (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature, 425, 980–984.

    Article  CAS  Google Scholar 

  23. Hancock, J. T. (2005) Cell Signalling, 2nd ed., Oxford University Press, Oxford..

    Google Scholar 

  24. Hancock, J. T. (2003) The principles of cell signalling, in On Growth, Form and Computers, (Kumar S., Bentley, P. J., eds.), Academic, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hancock, J.T. (2008). The Role of Redox in Signal Transduction. In: Hancock, J.T. (eds) Redox-Mediated Signal Transduction. Methods in Molecular Biology™, vol 476. Humana Press. https://doi.org/10.1007/978-1-59745-129-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-129-1_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-842-3

  • Online ISBN: 978-1-59745-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics