Skip to main content

Role of Vector-Transmission Proteins

  • Protocol
Plant Virology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 451))

Abstract

Most phytoviruses rely on vectors for their spread and survival. Although a great variety of virus vectors have been described, there are relatively few different mechanisms mediating virus transmission by vectors: virions can either be internalized into vector cells where replication may or may not take place or they can simply be adsorbed on the vector's surface or cuticle. Virus transmission by vectors requires tight associations between viral proteins, generally capsid proteins, and vector compounds, usually referred to as receptors. This review will focus on the viral determinants involved in virus transmission. Only the best-known models for which molecular data are available are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Herrbach, E. (2005). Arthropod transmission. In Viruses and Virus Diseases of Poaceae (Graminae), Lapierre H and A. Signoret P, eds. (INRA editions, Versailles), pp. 114–124.

    Google Scholar 

  2. 2. Nault, L.R. (1997). Arthropod transmission of plant viruses: a new synthesis. In Ann Entomol Soc Am, 90, pp. 521–541.

    Google Scholar 

  3. 3. McClintock, J.A., and Smith, L.B. (1918). True nature of spinach-blight and relation of insects to its transmission. J Agric Res Washington DC 14, 1–59.

    Google Scholar 

  4. 4. van den Heuvel, J.F.J.M., Franz, A.W.E., and van der Wilk, F. (1999). Molecular basis of plant virus transmission. Trends Microbiol 7, 71–76.

    Article  PubMed  Google Scholar 

  5. 5. Ammar, E.D, Järlfors, U., and Pirone, T.P. (1994). Association of potyvirus helper component protein with virions and the cuticle lining the maxillary food canal and foregut of an aphid vector. Phytopathology 84, 1054–1060.

    Article  Google Scholar 

  6. 6. Wang, R.Y., Ammar, E.D., Thornbury, D.W., Lopez-Moya, J.J., and Pirone, T.P. (1996). Loss of potyvirus transmissibility and helper-component activity correlate with non-retention of virions in aphid stylets. J Gen Virol 77, 861–867.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Martin, B., Collar, J.L., Tjallingii, W.F., and Fereres, A. (1997). Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J Gen Virol 78, 2701–2705.

    PubMed  CAS  Google Scholar 

  8. 8. Powell, G. (2005). Intracellular salivation is the aphid activity associated with inoculation of non-persistently transmitted viruses. J Gen Virol 86, 469–472.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Gera, A., Loebenstein, G., and Raccah, B. (1979). Protein coats of two strains of cucumber mosaic affect transmission by Aphis gossypii. Phytopathology 69, 396–399.

    Article  CAS  Google Scholar 

  10. 10. Palukaitis, P., and Garcia-Arenal, F. (2003). Cucumoviruses. Adv Virus Res 62, 241–323.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Ng, J.C., Josefsson, C., Clark, A.J., Franz, A.W., and Perry, K.L. (2005). Virion stability and aphid vector transmissibility of Cucumber mosaic virus mutants. Virology 332, 397–405.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Pirone, T.P., and Blanc, S. (1996). Helper-dependent vector transmission of plant viruses. Annu Rev Phytopathol 34, 227–247.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Syller, J. (2006). The roles and mechanisms of helper component proteins encoded by potyviruses and caulimoviruses. Physiol Mol Plant Pathol, 67, 119–130.

    Article  Google Scholar 

  14. 14. Hull, R. (2002). Matthew's Plant Virology (Academic Press, San Diego, USA).

    Google Scholar 

  15. 15. Plisson, C., Drucker, M., Blanc, S., German-Retana, S., Le Gall, O., Thomas, D., and Bron, P. (2003). Structural characterization of HC-Pro, a plant virus multifunctional protein. J Biol Chem 278, 23753–23761.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Ruiz-Ferrer, V., Boskovic, J., Alfonso, C., Rivas, G., Llorca, O., Lopez-Abella, D., and Lopez-Moya, J.J. (2005). Structural analysis of tobacco etch potyvirus HC-pro oligomers involved in aphid transmission. J Virol 79, 3758–3765.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Torrance, L., Andreev, I.A., Gabrenaite-Verhovskaya, R., Cowan, G., Makinen, K., and Taliansky, M.E. (2006). An unusual structure at one end of potato potyvirus particles. J Mol Biol 357, 1–8.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Blanc, S., Hebrard, E., Drucker, M., and Froissart, R. (2001). Molecular aspects of virus-vector interactions. In virus-insect-plant interactions, K.F. Harris, ed. (Academic press Inc, USA), pp. 143–166.

    Chapter  Google Scholar 

  19. 19. Drucker, M., Froissart, R., Hebrard, E., Uzest, M., Ravallec, M., Esperandieu, P., Mani, J.C., Pugniere, M., Roquet, F., Fereres, A., and Blanc, S. (2002). Intracellular distribution of viral gene products regulates a complex mechanism of cauliflower mosaic virus acquisition by its aphid vector. Proc Natl Acad Sci U S A 99, 2422–2427.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Palacios, I., Drucker, M., Blanc, S., Leite, S., Moreno, A., and Fereres, A. (2002). Cauliflower mosaic virus is preferentially acquired from the phloem by its aphid vectors. J Gen Virol 83, 3163–3171.

    PubMed  CAS  Google Scholar 

  21. 21. Plisson, C., Uzest, M., Drucker, M., Froissart, R., Dumas, C., Conway, J., Thomas, D., Blanc, S., and Bron, P. (2005). Structure of the mature P3-virus particle complex of cauliflower mosaic virus revealed by cryo-electron microscopy. J Mol Biol 346, 267–277.

    Article  PubMed  CAS  Google Scholar 

  22. 22. Stavolone, L., Villani, M.E., Leclerc, D., and Hohn, T. (2005). A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. Proc Natl Acad Sci U S A 102, 6219–6224.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Gildow, F.E. (1999). Luteovirus transmission and mechanisms regulating vector specificity. In The Luteoviridae, G.H. Smith and H. Baker, eds. (CAB International, Oxon, UK), pp. 88–113.

    Google Scholar 

  24. 24. Brault, V., Herrbach, E., and Reinbold, C. (2007). Electron microscopy studies on luteovirid transmission by aphids. Micron 38, 302–312.

    Article  PubMed  CAS  Google Scholar 

  25. 25. Brault, V., Ziegler-Graff, V., and Richards, K. (2001). Viral determinants involved in luteovirus-aphid interactions, K.F. Harris, ed. (Academic press, Inc., USA), pp. 207–232.

    Google Scholar 

  26. 26. Gray, S., and Gildow, F.E. (2003). Luteovirus-aphid interactions. Annu Rev Phytopathol 41, 539–566.

    Article  PubMed  CAS  Google Scholar 

  27. 27. Seddas, P., and Boissinot, S. (2006). Glycosylation of beet western yellows virus proteins is implicated in the aphid transmission of the virus. Arch Virol 151, 967–984.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Brault, V., Bergdoll, M., Mutterer, J., Prasad, V., Pfeffer, S., Erdinger, M., Richards, K.E., and Ziegler-Graff, V. (2003). Effects of point mutations in the major capsid protein of beet western yellows virus on capsid formation, virus accumulation, and aphid transmission. J Virol 77, 3247–3256.

    Article  PubMed  CAS  Google Scholar 

  29. 29. Seddas, P., Boissinot, S., Strub, J.M., Van Dorsselaer, A., Van Regenmortel, M.H., and Pattus, F. (2004). Rack-1, GAPDH3, and actin: proteins of Myzus persicae potentially involved in the transcytosis of beet western yellows virus particles in the aphid. Virology 325, 399–412.

    Article  PubMed  CAS  Google Scholar 

  30. 30. Herrbach, E. (1999). Virus-vector interactions, Introduction. In The Luteoviridae, G.H. Smith and H. Barker, eds. (CAB International, Oxon, UK), pp. 85–88.

    Google Scholar 

  31. 31. Brault, V., Perigon, S., Reinbold, C., Erdinger, M., Scheidecker, D., Herrbach, E., Richards, K., and Ziegler-Graff, V. (2005). The polerovirus minor capsid protein determines vector specificity and intestinal tropism in the aphid. J Virol 79, 9685–9693.

    Article  PubMed  CAS  Google Scholar 

  32. 32. Gray, S.M., and Banerjee, N. (1999). Mechanisms of arthropod transmission of plant and animal viruses. Microbiol Mol Biol Rev 63, 128–148.

    PubMed  CAS  Google Scholar 

  33. 33. Soto, M.J., Chen, L.F., Seo, Y.S., and Gilbertson, R.L. (2005). Identification of regions of the Beet mild curly top virus (family Geminiviridae) capsid protein involved in systemic infection, virion formation and leafhopper transmission. Virology 341, 257–270.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Böttcher, B., Unseld, S., Ceulemans, H., Russell, R.B., and Jeske, H. (2004). Geminate structures of African cassava mosaic virus. J Virol 78, 6758–6765.

    Article  PubMed  Google Scholar 

  35. 35. Noris, E., Vaira, A.M., Caciagli, P., Masenga, V., Gronenborn, B., and Accotto, G.P. (1998). Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J Virol 72, 10050–10057.

    PubMed  CAS  Google Scholar 

  36. 36. Kheyr-Pour, A., Bananej, K., Dafalla, G., A, Caciagli, P., Noris, E., Ahoonmanesh, A., Lecoq, H., and Gronenborn, B. (2000). Watermelon chlorotic stunt virus from the Sudan and Iran: sequence comparisons and identification of a whitefly-transmission determinant. Phytopathology 90, 629–635.

    Article  PubMed  CAS  Google Scholar 

  37. 37. Höhnle, M., Höfer, P., Bedford, I.D., Briddon, R.W., Markham, P.G., and Frischmuth, T. (2001). Exchange of three amino acids in the coat protein results in efficient whitefly transmission of a nontransmissible Abutilon mosaic virus isolate. Virology 290, 164–171.

    Article  PubMed  Google Scholar 

  38. 38. Morin, S., Ghanim, M., Sobol, I., and Czosnek, H. (2000). The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and nontransmissible begomoviruses in the yeast two-hybrid system. Virology 276, 404–416.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Sinisterra, X.H., McKenzie, C.L., Hunter, W.B., Powell, C.A., and Shatters, Jr. R.G. (2005). Differential transcriptional activity of plant-pathogenic begomoviruses in their whitefly vector (Bemisia tabaci, Gennadius: Hemiptera Aleyrodidae). J Gen Virol 86, 1525–1532.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Franz, A.W.E., van der Wilk, F., Verbeek, M., Dullemans, A.M., and van den Heuvel, J.F. (1999). Faba bean necrotic yellows virus (genus Nanovirus) requires a helper factor for its aphid transmission. Virology 262, 210–219.

    Article  PubMed  CAS  Google Scholar 

  41. 41. Whitfield, A.E., Ullman, D.E., and German, T.L. (2005). Tospovirus-thrips interactions. Annu Rev Phytopathol 43, 459–489.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Nagata, T., Nagata-Inoue, A.K., Prins, M., Goldbach, R., and Peters, D. (2000). Impeded thrips transmission of defective tomato spotted wilt virus isolates. Phytopathology 90, 454–459.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Moritz, G., Kumm, S., and Mound, L. (2004). Tospovirus transmission depends on thrips ontogeny. Virus Res 100, 143–149.

    Article  PubMed  CAS  Google Scholar 

  44. 44. Ludwig, G.V., Israel, B.A., Christensen, B.M., Yuill, T.M., and Schultz, K.T. (1991). Role of La Crosse virus glycoproteins in attachment of virus to host cells. Virology 181, 564–571.

    Article  PubMed  CAS  Google Scholar 

  45. 45. Whitfield, A.E., Ullman, D.E., and German, T.L. (2004). Expression and characterization of a soluble form of tomato spotted wilt virus glycoprotein GN. J Virol 78, 13197–13206.

    Article  PubMed  CAS  Google Scholar 

  46. 46. Whitfield, A.E., Ullman, D.E., and German, T.L. (2005). Tomato spotted wilt virus glycoprotein G(C) is cleaved at acidic pH. Virus Res 110, 183–186.

    Article  PubMed  CAS  Google Scholar 

  47. 47. Ammar, E.D., and Nault, L.R. (1985). Assembly and accumulation sites of maize mosaic virus in its planthopper vector. Intervirology 24, 33–41.

    Article  PubMed  CAS  Google Scholar 

  48. 48. Hogenhout, S., A, Redinbaugh, M., G, and Ammar, E., D, (2003). Plant and animal rhabdovi-rus host range: a bug's view. Trends Microbiol 11, 264–271.

    Article  PubMed  CAS  Google Scholar 

  49. 49. Zhou, G.Y., Lu, X.B., Lu, H.J., Lei, J.L., Chen, S.X., and Gong, Z.X. (1999). Rice ragged stunt Oryzavirus: role of the viral spike protein in transmission by the insect vector. Ann Appl Biol 135, 573–578.

    Article  CAS  Google Scholar 

  50. 50. Omura, T., Yan, J., Zhong, B., Wada, M., Zhu, Y., Tomaru, M., Maruyama, W., Kikuchi, A., Watanabe, Y., Kimura, I., and Hibino, H. (1998). The P2 protein of rice dwarf phytoreovirus is required for adsorption of the virus to cells of the insect vector. J Virol 72, 9370–9373.

    PubMed  CAS  Google Scholar 

  51. 51. Taylor, C.E., and Brown, D.J.F. (1997). Nematode vectors of plant viruses. (Wallingford,UK: CAB International), p. 286.

    Google Scholar 

  52. 52. MacFarlane, S.A. (2003). Molecular determinants of the transmission of plant viruses by nematodes. Mol Plant Pathol. 4, 211–215.

    Article  PubMed  CAS  Google Scholar 

  53. 53. Belin, C., Schmitt, C., Demangeat, G., Komar, V., Pinck, L., and Fuchs, M. (2001). Involvement of RNA2-encoded proteins in the specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index. Virology 291, 161–171.

    Article  PubMed  CAS  Google Scholar 

  54. 54. Andret-Link, P., Schmitt-Keichinger, C., Demangeat, G., Komar, V., and Fuchs, M. (2004). The specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index is solely determined by the viral coat protein. Virology 320, 12–22.

    Article  PubMed  CAS  Google Scholar 

  55. 55. Rochon, D., Kakani, K., Robbins, M., and Reade, R. (2004). Molecular aspects of plant virus transmission by olpidium and plasmodiophorid vectors. Annu Rev Phytopathol 42, 211–241.

    Article  PubMed  CAS  Google Scholar 

  56. 56. Kakani, K., Robbins, M., and Rochon, D. (2003). Evidence that binding of cucumber necrosis virus to vector zoospores involves recognition of oligosaccharides. J Virol 77, 3922–3928.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Kakani, K., Reade, R., and Rochon, D. (2004). Evidence that vector transmission of a plant virus requires conformational change in virus particles. J Mol Biol 338, 507–517.

    Article  PubMed  CAS  Google Scholar 

  58. 58. Haeberle, A.M., Stussi-Garaud, C., Schmitt, C., Garaud, J.C., Richards, K.E., Guilley, H., and Jonard, G. (1994). Detection by immunogold labelling of P75 readthrough protein near an extremity of beet necrotic yellow vein virus particles. Arch Virol 134, 195–203.

    Article  PubMed  CAS  Google Scholar 

  59. 59. Cowan, G.H., Torrance, L., and Reavy, B. (1997). Detection of potato mop-top virus capsid readthrough protein in virus particles. J Gen Virol 78, 1779–1783.

    PubMed  CAS  Google Scholar 

  60. 60. Richards, K.E., and Tamada, T. (1992). Mapping functions on the multipartite genome of beet necrotic yellow vein virus. Annu Rev Phytopathol 42, 211–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Ziegler-Graff, V., Brault, V. (2008). Role of Vector-Transmission Proteins. In: Foster, G.D., Johansen, I.E., Hong, Y., Nagy, P.D. (eds) Plant Virology Protocols. Methods in Molecular Biology™, vol 451. Humana Press. https://doi.org/10.1007/978-1-59745-102-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-102-4_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-827-0

  • Online ISBN: 978-1-59745-102-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics