Skip to main content

Ubiquitin-Mediated Protein Degradation in Xenopus Egg Extracts

  • Protocol
Book cover Xenopus Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

Events controlling cell division are governed by the degradation of different regulatory proteins by the ubiquitin-dependent pathway. In this pathway, the attachment of a polyubiquitin chain to a substrate by an ubiquitin-ligase targets this substrate for degradation. Xenopus egg extracts present many advantages for the study of the cell cycle, including the availability of a large quantity of material synchronized at a particular phase of the cell cycle. In this chapter, we describe various protocols used in Xenopus egg extracts to study the ubiquitination and degradation of different cell cycle regulators. We first provide the method used to obtain interphase- and metaphase II-arrested egg extracts. Subsequently, we describe the protocol employed in these extracts to test the putative ubiquitination and degradation of a protein. Moreover, we describe a detailed practical procedure to test the role of different regulators in the ubiquitin-dependent degradation pathway of a specific protein. To that, we show how to eliminate some of these regulators from the extracts by immunodepletion and how to activate ectopically their function by the translation of their messenger ribonucleic acid. Finally, the Notes provide a series of practical details that explain the different problems that can occur and the possible solutions used to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flemming, W. (1965) Contributions to the knowledge of the cell and its vital processes. Part II. J. Cell Biol. 25, 3–69.

    CAS  PubMed  Google Scholar 

  2. Lohka, M. J. and Masui, Y. (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220, 719–721.

    Article  CAS  PubMed  Google Scholar 

  3. Hershko, A. and Ciechanover, A. (1998) The ubiquitin system. Annu. Rev. Biochem. 67, 425–479.

    Article  CAS  PubMed  Google Scholar 

  4. Beers, E. P. and Callis, J. (1993) Utility of polyhistidine-tagged ubiquitin in the purification of ubiquitin-protein conjugates and as an affinity ligand for the purification of ubiquitin-specific hydrolases. J. Biol. Chem. 268, 21,645–21,649.

    CAS  PubMed  Google Scholar 

  5. Scheffner, M., Huibregtse, J. M., and Howley, P. M. (1994) Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. Proc. Natl. Acad. Sci. USA 91, 8797–8801.

    Article  CAS  PubMed  Google Scholar 

  6. Tamura. T., Tanaka, K., Tanahashi, N., and Ichihara, A. (1991) Improved method for preparation of ubiquitin-ligated lysozyme as substrate of ATP-dependent proteolysis. FEBS Lett. 292, 154–158.

    Article  CAS  PubMed  Google Scholar 

  7. Castro, A., Peter, M., Lorca, T., and Mandart, E. (2001) c-Mos and cyclin B/cdc2 connections during Xenopus oocyte maturation. Biol. Cell 93, 15–25.

    Article  CAS  PubMed  Google Scholar 

  8. Losada, A., Hirano, M., and Hirano, T. (2002) Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev. 16, 3004–3016.

    Article  CAS  PubMed  Google Scholar 

  9. Cuvier, O. and Hirano, T. (2003) A role of topoisomerase II in linking DNA replication to chromosome condensation. J. Cell Biol. 160, 645–655.

    Article  CAS  PubMed  Google Scholar 

  10. Moore, J. D., Kirk, J. A., and Hunt, T. (2003). Unmasking the S-phase-promoting potential of cyclin Bl. Science 300, 987–990.

    Article  CAS  PubMed  Google Scholar 

  11. Vashee, S., Cvetic, C, Lu, W., Simancek, P., Kelly, T. J., and Walter, J. C. (2003) Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 17, 1894–1908.

    Article  CAS  PubMed  Google Scholar 

  12. Castro, A., Vigneron, S., Bernis, C, Labbe, J. C, Prigent, C, and Lorca, T. (2002) The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora-A. EMBO Rep. 3, 1209–1214.

    Article  CAS  PubMed  Google Scholar 

  13. Castro, A., Arlot-Bonnemains, Y., Vigneron, S., Labbe, J. C, Prigent, C, and Lorca, T. (2002) APC/Fizzy-related targets Aurora-A kinase for proteolysis. EMBO Rep. 3, 457–462.

    Article  CAS  PubMed  Google Scholar 

  14. Home, M. M. and Guadagno, T. M. (2003) A requirement for MAP kinase in the assembly and maintenance of the mitotic spindle. J. Cell Biol. 161, 1021–1028.

    Article  Google Scholar 

  15. Reimann, J. D. and Jackson, P. K. (2002) Emil is required for cytostatic factor arrest in vertebrate eggs. Nature 416, 850–854.

    Article  CAS  PubMed  Google Scholar 

  16. Lorca, T., Castro, A., Martinez, A. M., et al. (1998) Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J. 17, 3565–3575.

    Article  CAS  PubMed  Google Scholar 

  17. Castro, A., Vigneron, S., Bernis, C, Labbe, J. C, and Lorca, T. (2003) Xkid is degraded in a D-box, KEN-box, and A-box-independent pathway. Mol. Cell Biol. 23, 4126–4138.

    Article  CAS  PubMed  Google Scholar 

  18. Murray, A. W. and Kirschner, M. W. (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280.

    Article  CAS  PubMed  Google Scholar 

  19. Funabiki, H. and Murray, A. W. (2000) The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102, 411–424.

    Article  CAS  PubMed  Google Scholar 

  20. Glotzer, M., Murray, A. W., and Kirschner, M. W. (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138.

    Article  CAS  PubMed  Google Scholar 

  21. Zou, H., McGarry, T. J., Bernal, T., and Kirschner, M. W. (1999) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285, 418–422.

    Article  CAS  PubMed  Google Scholar 

  22. Cohen-Fix, O., Peters, J. M., Kirschner, M. W., and Koshland, D. (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 10, 3081–3093.

    Article  CAS  PubMed  Google Scholar 

  23. Pfleger, C. M. and Kirschner, M. W. (2000) The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655–665.

    CAS  PubMed  Google Scholar 

  24. Yamano, H., Gannon, J., and Hunt, T. (1996) The role of proteolysis in cell cycle progression in Schizosaccharomyces pombe. EMBO J. 15, 5268–5279.

    CAS  PubMed  Google Scholar 

  25. Visintin, R., Prinz, S., and Amon, A. (1997) CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460–463.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Castro, A., Vigneron, S., Bernis, C., Labbé, JC., Lorca, T. (2006). Ubiquitin-Mediated Protein Degradation in Xenopus Egg Extracts. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics