Skip to main content

Functionalized Vesicles by Microfluidic Device

  • Protocol
  • First Online:
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1572))

Abstract

In recent years, lipid vesicles have become popular vehicles for the creation of biosensors. Vesicles can hold reaction components within a selective permeable membrane that provides an ideal environment for membrane protein biosensing elements. The lipid bilayer allows a protein to retain its native structure and function, and the membrane fluidity can allow for conformational changes and physiological interactions with target analytes. Here, we present two methods for the production of giant unilamellar vesicles (GUVs) within a microfluidic device that can be used as the basis for a biosensor. The vesicles are produced from water-in-oil-in-water (W/O/W) double emulsion templates using a nonvolatile oil phase. To create the GUVs, the oil can be removed via extraction with ethanol, or by altering the interfacial tension between the oil and carrier solution causing the oil to retract into a cap on one side of the structure, leaving behind an exposed lipid bilayer. Methods to integrate sensing elements and membrane protein pores onto the vesicles are also introduced in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853

    Article  CAS  Google Scholar 

  2. Peterson RD, Chen WL, Cunningham BT, Andrade JE (2015) Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor. Biosens Bioelectron 74:815–822

    Article  CAS  Google Scholar 

  3. Bhuvana M, Narayanan JS, Dharuman V, Teng W, Hahn JH, Jayakumar K (2013) Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing. Biosens Bioelectron 41:802–808

    Article  CAS  Google Scholar 

  4. Zou L, Wang Q, Tong MM, Li HB, Wang J, Hu N et al (2016) Detection of diarrhetic shellfish poisoning toxins using high-sensitivity human cancer cell-based impedance biosensor. Sensors and Actuators B-Chemical 222:205–212

    Article  CAS  Google Scholar 

  5. Solovyev A, Kuncova G, Demnerova K (2015) Whole-cell optical biosensor for mercury – operational conditions in saline water. Chem Papers 69:183–191

    Article  CAS  Google Scholar 

  6. Girousi ST, Pantazaki AA, Voulgaropoulos AN (2001) Mitochondria-based amperometric biosensor for the determination of L-glutamic acid. Electroanalysis 13:243–245

    Article  CAS  Google Scholar 

  7. Carpentier R, Loranger C, Chartrand J, Purcell M (1991) Photoelectrochemical cell containing chloroplast membranes as a biosensor for phytotoxicity measurements. Anal Chim Acta 249:55–60

    Article  CAS  Google Scholar 

  8. Yun YH, Eteshola E, Bhattacharya A, Dong ZY, Shim JS, Conforti L et al (2009) Tiny medicine: nanomaterial-based biosensors. Sensors 9:9275–9299

    Article  CAS  Google Scholar 

  9. Kim HJ, Bennetto HP, Halablab MA (1995) A novel liposome-based electrochemical biosensor for the detection of hemolytic microorganisms. Biotechnol Techniques 9:389–394

    Article  CAS  Google Scholar 

  10. Zehani N, Fortgang P, Lachgar MS, Baraket A, Arab M, Dzyadevych SV et al (2015) Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film. Biosens Bioelectron 74:830–835

    Article  CAS  Google Scholar 

  11. Li DD, Cheng W, Yan YR, Zhang Y, Yin YB, Ju HX et al (2016) A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine. Talanta 146:470–476

    Article  CAS  Google Scholar 

  12. Bhand SG, Soundararajan S, Surugiu-Warnmark I, Milea JS, Dey ES, Yakovleva M et al (2010) Fructose-selective calorimetric biosensor in flow injection analysis. Anal Chim Acta 668:13–18

    Article  CAS  Google Scholar 

  13. Park SC, Cho EJ, Moon SY, Yoon SI, Kim YJ, Kim DH et al (2007) A calorimetric biosensor and its application for detecting a cancer cell with optical imaging. World Congress on Medical Physics and Biomedical Engineering 2006, Vol 14, Pts 1–6 14:637–640

    Article  Google Scholar 

  14. Jang H, Jung S, Shin KS, Kim SM, Jeon TJ (2014) Polydiacetylene (PDA) vesicle based colorimetric biosensor for detection of genetically modified (GM) crops. Biophys J 106:417a–417a

    Article  Google Scholar 

  15. Giamblanco N, Conoci S, Russo D, Marletta G (2015) Single-step label-free hepatitis B virus detection by a piezoelectric biosensor. Rsc Adv 5:38152–38158

    Article  CAS  Google Scholar 

  16. Kim S, Choi SJ (2014) A lipid-based method for the preparation of a piezoelectric DNA biosensor. Anal Biochem 458:1–3

    Article  CAS  Google Scholar 

  17. Bahadir EB, Sezginturk MK (2015) Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal Biochem 478:107–120

    Article  CAS  Google Scholar 

  18. Justino CIL, Freitas AC, Pereira R, Duarte AC, Santos TAPR (2015) Recent developments in recognition elements for chemical sensors and biosensors. Trac-Trends Anal Chem 68:2–17

    Article  CAS  Google Scholar 

  19. Vamakaki V, Chaniotakis NA (2007) Carbon nanostructures as transducers in biosensors. Sens Actuat B Chem 126:193–197

    Article  Google Scholar 

  20. Frey S, Millat T, Hohmann S, Wolkenhauer O (2008) How quantitative measures unravel design principles in multi-stage phosphorylation cascades. J Theor Biol 254:27–36

    Article  CAS  Google Scholar 

  21. Eriksson E, Aspan A (2007) Comparison of culture, ELISA and PCR techniques for salmonella detection in faecal samples for cattle, pig and poultry. BMC Vet Res 3:21

    Article  Google Scholar 

  22. Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77:237–256

    Article  CAS  Google Scholar 

  23. van den Hurk R, Evoy S (2015) A Review of Membrane-Based Biosensors for Pathogen Detection. Sensors 15:14045–14078

    Article  Google Scholar 

  24. Jin LY, Dong YM, Wu XM, Cao GX, Wang GL (2015) Versatile and amplified biosensing through enzymatic cascade reaction by coupling alkaline phosphatase in situ generation of photoresponsive nanozyme. Anal Chem 87:10429–10436

    Article  CAS  Google Scholar 

  25. Zhu X, Sun L, Chen YY, Ye ZH, Shen ZM, Li GX (2013) Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication. Biosens Bioelectron 47:32–37

    Article  CAS  Google Scholar 

  26. Kuiper SM, Nallani M, Vriezema DM, Cornelissen JJLM, van Hest JCM, Nolte RJM et al (2008) Enzymes containing porous polymersomes as nano reaction vessels for cascade reactions. Org Biomol Chem 6:4315–4318

    Article  CAS  Google Scholar 

  27. van Dongen SFM, Nallani M, Cornelissen JLLM, Nolte RJM, van Hest JCM (2009) A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. Chem A Eur J 15:1107–1114

    Article  Google Scholar 

  28. Tanner P, Balasubramanian V, Palivan CG (2013) Aiding nature’s organelles: artificial peroxisomes play their role. Nano Lett 13:2875–2883

    Article  CAS  Google Scholar 

  29. Ben-Haim N, Broz P, Marsch S, Meier W, Hunziker P (2008) Cell-specific integration of artificial organelles based on functionalized polymer vesicles. Nano Lett 8:1368–1373

    Article  CAS  Google Scholar 

  30. Steller L, Kreir M, Salzer R (2012) Natural and artificial ion channels for biosensing platforms. Anal Bioanal Chem 402:209–230

    Article  CAS  Google Scholar 

  31. Reppy MA, Pindzola BA (2007) Biosensing with polydiacetylene materials: structures, optical properties and applications. Chem Commun 42:4317–4338

    Article  Google Scholar 

  32. Silbert L, Ben Shlush I, Israel E, Porgador A, Kolusheva S, Jelinek R (2006) Rapid chromatic detection of bacteria by use of a new biomimetic polymer sensor. Appl Environ Microbiol 72:7339–7344

    Article  CAS  Google Scholar 

  33. Su YL, Li JR, Jiang L (2005) A study on the interactions of surfactants with phospholipid/polydiacetylene vesicles in aqueous solutions. Colloids Surf A Physicochem Eng Aspects 257–58:25–30

    Article  Google Scholar 

  34. Bally M, Bailey K, Sugihara K, Grieshaber D, Voros J, Stadler B (2010) Liposome and lipid bilayer arrays towards biosensing applications. Small 6:2481–2497

    Article  CAS  Google Scholar 

  35. Damhorst GL, Smith CE, Salm EM, Sobieraj MM, Ni HK, Kong H et al (2013) A liposome-based ion release impedance sensor for biological detection. Biomed Microdevices 15:895–905

    Article  CAS  Google Scholar 

  36. Ho JAA, Wauchope RD (2002) A strip liposome immunoassay for aflatoxin B-1. Anal Chem 74:1493–1496

    Article  CAS  Google Scholar 

  37. Ahn-Yoon S, DeCory TR, Durst RA (2004) Ganglioside-liposome immunoassay for the detection of botulinum toxin. Anal Bioanal Chem 378:68–75

    Article  CAS  Google Scholar 

  38. Ho JAA, Zeng SC, Tseng WH, Lin YJ, Chen CH (2008) Liposome-based immunostrip for the rapid detection of Salmonella. Anal Bioanal Chem 391:479–485

    Article  CAS  Google Scholar 

  39. Rongen HAH, Vanderhorst HM, Hugenholtz GWK, Bult A, Vanbennekom WP, Vandermeide PH (1994) Development of a liposome immunosorbent-assay for human interferon-gamma. Anal Chim Acta 287:191–199

    Article  CAS  Google Scholar 

  40. Ou LJ, Liu SJ, Chu X, Shen GL, Yu RQ (2009) DNA encapsulating liposome based rolling circle amplification immunoassay as a versatile platform for ultrasensitive detection of protein. Anal Chem 81:9664–9673

    Article  CAS  Google Scholar 

  41. Chen H, Zheng Y, Jiang JH, Wu HL, Shen GL, Yu RQ (2008) An ultrasensitive chemiluminescence biosensor for cholera toxin based on ganglioside-functionalized supported lipid membrane and liposome. Biosens Bioelectron 24:684–689

    Article  CAS  Google Scholar 

  42. Cooper MA, Hansson A, Lofas S, Williams DH (2000) A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal Biochem 277:196–205

    Article  CAS  Google Scholar 

  43. Patolsky F, Lichtenstein A, Willner I (2000) Amplified microgravimetric quartz-crystal-microbalance assay of DNA using oligonucleotide-functionalized liposomes or biotinylated liposomes. J Am Chem Soc 122:418–419

    Article  CAS  Google Scholar 

  44. Grieshaber D, de Lange V, Hirt T, Lu Z, Voros J (2008) Vesicles for signal amplification in a biosensor for the detection of low antigen concentrations. Sensors 8:7894–7903

    Article  CAS  Google Scholar 

  45. Liu QT, Boyd BJ (2013) Liposomes in biosensors. Analyst 138:391–409

    Article  CAS  Google Scholar 

  46. Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220

    Article  CAS  Google Scholar 

  47. Shum HC, Lee D, Yoon I, Kodger T, Weitz DA (2008) Double emulsion templated monodisperse phospholipid vesicles. Langmuir 24:7651–7653

    Article  CAS  Google Scholar 

  48. Hayward RC, Utada AS, Dan N, Weitz DA (2006) Dewetting instability during the formation of polymersomes from block-copolymer-stabilized double emulsions. Langmuir 22:4457–4461

    Article  CAS  Google Scholar 

  49. Teh S-Y, Khnouf R, Fan H, Lee AP (2011) Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics. Biomicrofluidics 5:044113–044113-12

    Article  Google Scholar 

  50. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  CAS  Google Scholar 

  51. Xia YN, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:551–575

    Article  Google Scholar 

  52. K. Tsumoto, K. Kamiya, S. Kitaoka, S. Ogata, M. Tomita, and T. Yoshimura(2009) G protein coupled receptors (GPCRs) reconstituted on recombinant proteoliposomes using baculovirus-liposome membrane fusion. In: Micro-nanomechatronics and human science. International Symposium on MHS 2009. 2009: 202–207.

    Google Scholar 

  53. Csiszár A, Hersch N, Dieluweit S, Biehl R, Merkel R, Hoffmann B (2010) Novel fusogenic liposomes for fluorescent cell labeling and membrane modification. Bioconjug Chem 21:537–543

    Article  Google Scholar 

  54. Lee MT, Sun TL, Hung WC, Huang HW (2013) Process of inducing pores in membranes by melittin. Proc Natl Acad Sci U S A 110:14243–14248

    Article  CAS  Google Scholar 

  55. Hsin TM, Wu K, Chellappan G (2012) Magnetically immobilized nanoporous giant proteoliposomes as a platform for biosensing. Analyst 137:245–248

    Article  CAS  Google Scholar 

  56. Lemiere J, Guevorkian K, Campillo C, Sykes C, Betz T (2013) alpha-Hemolysin membrane pore density measured on liposomes. Soft Matter 9:3181–3187

    Article  CAS  Google Scholar 

  57. Bakowsky H, Richter T, Kneuer C, Hoekstra D, Rothe U, Bendas G et al (2008) Adhesion characteristics and stability assessment of lectin-modified liposomes for site-specific drug delivery. BBA-Biomembranes 1778:242–249

    Article  CAS  Google Scholar 

  58. Bendas G, Krause A, Bakowsky U, Vogel J, Rothe U (1999) Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. Int J Pharm 181:79–93

    Article  CAS  Google Scholar 

  59. Baksh MM, Dean C, Pautot S, DeMaria S, Isacoff E, Groves JT (2005) Neuronal activation by GPI-linked neuroligin-1 displayed in synthetic lipid bilayer membranes. Langmuir 21:10693–10698

    Article  CAS  Google Scholar 

  60. Kucerka N, Tristram-Nagle S, Nagle JF (2005) Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J Membr Biol 208:193–202

    Article  CAS  Google Scholar 

  61. Wilchek M, Bayer EA (1990) Introduction to avidin-biotin technology. Methods Enzymol 184:5–13

    Article  CAS  Google Scholar 

  62. Guesdon JL, Ternynck T, Avrameas S (1979) Use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27:1131–1139

    Article  CAS  Google Scholar 

  63. Giannoni F, Barnett J, Bi K, Samodal R, Lanza P, Marchese P et al (2005) Clustering of T cell Ligands on artificial APC membranes influences T cell activation and protein kinase C theta translocation to the T cell plasma membrane. J Immunol 174:3204–3211

    Article  CAS  Google Scholar 

  64. Zappasodi R, Di Nicola M, Carlo-Stella C, Mortarini R, Molla A, Vegetti C et al (2008) The effect of artificial antigen-presenting cells with preclustered anti-CD28/−CD3/−LFA-1 monoclonal antibodies on the induction of ex vivo expansion of functional human antitumor T cells. Haematologica 93:1523–1534

    Article  CAS  Google Scholar 

  65. Hettiarachchi K, Lee AP, Zhang S, Feingold S, Dayton PA (2009) Controllable microfluidic synthesis of multiphase drug-carrying lipospheres for site-targeted therapy. Biotechnol Prog 25:938–945

    Article  CAS  Google Scholar 

  66. Koebnik R, Locher KP, Van Gelder P (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37:239–253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the National Institute of Health, Grant No. R01-EB012058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Vallejo, D., Lee, SH., Lee, A. (2017). Functionalized Vesicles by Microfluidic Device. In: Prickril, B., Rasooly, A. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1572. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6911-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6911-1_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6910-4

  • Online ISBN: 978-1-4939-6911-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics