Skip to main content

Resonant Waveguide Grating Imager for Single Cell Monitoring of the Invasion of 3D Speheroid Cancer Cells Through Matrigel

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1571))

Abstract

The invasion of cancer cells through their surrounding extracellular matrices is the first critical step to metastasis, a devastating event to cancer patients. However, in vitro cancer cell invasion is mostly studied using two-dimensional (2D) models. Three-dimensional (3D) multicellular spheroids may offer an advantageous cell model for cancer research and oncology drug discovery. This chapter describes a label-free, real-time, and single-cell approach to quantify the invasion of 3D spheroid colon cancer cells through Matrigel using a spatially resolved resonant waveguide grating imager.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Steeg PS, Theodorescu D (2008) Metastasis: a therapeutic target for cancer. Nat Clin Pract Oncol 5:206–219. doi:10.1038/ncponc1066

    Article  CAS  Google Scholar 

  2. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22. doi:10.1038/nrc2748

    Article  CAS  Google Scholar 

  3. Eccles SA, Box C, Court W (2005) Cell migration/invasion assays and their application in cancer drug discovery. Biotechnol Annu Rev 11:391–421. doi:10.1016/S1387-2656(05)11013-8

    Article  CAS  Google Scholar 

  4. Albini A, Benelli R (2007) The chemoinvasion assay: a method to assess tumor and endothelial cell invasion and its modulation. Nat Protoc 2:504–511. doi:10.1038/nprot.2006.466

    Article  CAS  Google Scholar 

  5. Kam Y, Guess C, Estrada L, Weidow B, Quaranta V (2008) A novel circular invasion assay mimics in vivo invasive behavior of cancer cell lines and distinguishes single-cell motility in vitro. BMC Cancer 8:198. doi:10.1186/1471-2407-8-198

    Article  Google Scholar 

  6. Carragher N (2009) Cell migration and invasion assays as tools for drug discovery. Clin Exp Metastasis 26:381–397. doi:10.3390/pharmaceutics3010107

    Article  CAS  Google Scholar 

  7. Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschläger M, Dolznig H (2013) In vitro cell migration and invasion assays. Mutat Res 752:10–24. doi:10.1016/j.mrrev.2012.08.001

    Article  CAS  Google Scholar 

  8. Quail DF, Maciel TJ, Rogers K, Postovit LM (2012) A unique 3D in vitro cellular invasion assay. J Biomol Screen 17:1088–1095. doi:10.1177/1087057112449863

    Article  Google Scholar 

  9. Chitcholtan K, Asselin E, Parent S, Sykes PH, Evans JJ (2013) Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer. Exp Cell Res 319:75–87. doi:10.1016/j.yexcr.2012.09.012

    Article  CAS  Google Scholar 

  10. Härmä V, Virtanen J, Mäkelä R, Happonen A, Mpindi JP, Knuuttila M, Kohonen P, Lötjönen J, Kallioniemi O, Nees M (2010) A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses. PLoS One 5:e10431. doi:10.1371/journal.pone.0010431

    Article  Google Scholar 

  11. Tanner, K. and Gottesman, M.M. (2015) Beyond 3D culture models of cancer. Sci Transl Med 7:283 ps9. doi:10.1126/scitranslmed.3009367.

  12. Justice BA, Badr NA, Felder RA (2009) 3D cell culture opens new dimensions in cell-based assays. Drug Discov Today 14(1-2):102–107. doi:10.1016/j.drudis.2008.11.006

    Article  CAS  Google Scholar 

  13. Pickl M, Ries CH (2009) Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 28:461–468. doi:10.1038/onc.2008.394

    Article  CAS  Google Scholar 

  14. Luca, A.C., Mersch, S., Deenen, R., Schmidt, S., Messner, I., Schäfer, K.L., Baldus, S.E., Huckenbeck, W., Piekorz, R.P., Knoefel, W.T., Krieg, A., and Stoecklein, N.H. (2013) Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One 8(3):e59689. doi:10.1371/journal.pone.0059689.

  15. Fisher KE, Pop A, Koh W, Anthis NJ, Saunders WB, Davis GE (2006) Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling. Mol Cancer 5:69. doi:10.1186/1476-4598-5-69

    Article  Google Scholar 

  16. Brekhman V, Neufeld G (2009) A novel asymmetric 3D in-vitro assay for the study of tumor cell invasion. BMC Cancer 9:415–427. doi:10.1186/1471-2407-9-415

    Article  Google Scholar 

  17. Pathak A, Kumar S (2011) Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr Biol 3:267–278. doi:10.1039/c0ib00095g

    Article  CAS  Google Scholar 

  18. Koch TM, Münster S, Bonakdar N, Butler JP, Fabry B (2012) 3D traction forces in cancer cell invasion. PLoS One 7:e33476. doi:10.1371/journal.pone.0033476

    Article  CAS  Google Scholar 

  19. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155:1639–1651. doi:10.1016/j.cell.2013.11.029

    Article  CAS  Google Scholar 

  20. Liu L, Duclos G, Sun B, Lee J, Wu A, Kam Y, Sontag ED, Stone HA, Sturm JC, Gatenby RA, Austin RH (2013) Minimization of thermodynamic costs in cancer cell invasion. Proc Natl Acad Sci U S A 110:1686–1691. doi:10.1073/pnas.1221147110

    Article  CAS  Google Scholar 

  21. Kniazeva E, Putnam AJ (2009) Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3D. Am J Physiol Cell Physiol 297:C179–C187. doi:10.1152/ajpcell.00018.2009

    Article  CAS  Google Scholar 

  22. Blacher S, Erpicum C, Lenoir B, Paupert J, Moraes G, Ormenese S, Bullinger E, Noel A (2014) Cell invasion in the spheroid sprouting assay: a spatial organization analysis adaptable to cell behaviour. PLoS One 9:e97019. doi:10.1371/journal.pone.0097019

    Article  Google Scholar 

  23. Ghosh S, Joshi MB, Ivanov D, Feder-Mengus C, Spagnoli GC, Martin I, Erne P, Resink TJ (2007) Use of multicellular tumor spheroids to dissect endothelial cell–tumor cell interactions: a role for T-cadherin in tumor angiogenesis. FEBS Lett 581:4523–4528. doi:10.1016/j.febslet.2007.08.038

    Article  CAS  Google Scholar 

  24. Oxmann D, Held-Feindt J, Stark AM, Hattermann K, Yoneda T, Mentlein R (2008) Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene 27:3567–3575. doi:10.1038/sj.onc.1211025

    Article  CAS  Google Scholar 

  25. Sabeh F, Shimizu-Hirota R, Weiss SJ (2009) Protease-dependent versus-independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185:11–19. doi:10.1083/jcb.200807195

    Article  CAS  Google Scholar 

  26. Febles NK, Ferrie AM, Fang Y (2014) Label-free single cell quantification of the invasion of spheroidal colon cancer cells through 3D Matrigel. Anal Chem 86:8842–8849. doi:10.1021/ac502269v

    Article  CAS  Google Scholar 

  27. Chandrasekaran S, Deng H, Fang Y (2015) PTEN deletion potentiates invasion of colorectal cancer spheroidal cells through 3D Matrigel. Integr Biol 7:324–334. doi:10.1039/c4ib00298a

    Article  CAS  Google Scholar 

  28. Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133:403–414. doi:10.1016/j.cell.2008.04.013

    Article  CAS  Google Scholar 

  29. Fang Y, Ferrie AM, Fontaine NH, Mauro J, Balakrishnan J (2006) Resonant waveguide grating biosensor for living cell sensing. Biophys J 91:1925–1940. doi:10.1529/biophysj.105.077818

    Article  CAS  Google Scholar 

  30. Fang Y (2007) Non-invasive optical biosensor for probing cell signaling. Sensors 7:2316–2329

    Article  CAS  Google Scholar 

  31. Benton G, Kleinman HK, George J, Arnaoutova I (2011) Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. Int J Cancer 128:1751–1757. doi:10.1002/ijc.25781

    Article  CAS  Google Scholar 

  32. Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W, Lomas C, Mendiola M, Hardisson D, Eccles SA (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 10:29. doi:10.1186/1741-7007-10-29

    Article  CAS  Google Scholar 

  33. Ferrie AM, Deichmann OD, Wu Q, Fang Y (2012) High resolution resonant waveguide grating imager for cell cluster analysis under physiological condition. Appl Phys Lett 100:223701. doi:10.1063/1.4723691

    Article  Google Scholar 

  34. Ferrie AM, Wu Q, Deichmann O, Fang Y (2014) High frequency resonant waveguide grating imager for assessing drug-induced cardiotoxicity. Appl Phys Lett 104:183702. doi:10.1063/1.4876095

    Article  Google Scholar 

  35. Fang Y, Ferrie AM, Fontaine NH, Yuen PK (2005) Characteristics of dynamic mass redistribution of EGF receptor signaling in living cells measured with label free optical biosensors. Anal Chem 77:5720–5725. doi:10.1021/ac050887n

    Article  CAS  Google Scholar 

  36. Fang Y (2011) Label-free biosensors for cell biology. Intl J Electrochem 2011:e460850. doi:10.4061/2011/460850

    Article  Google Scholar 

  37. Schröder R, Janssen N, Schmidt J, Kebig A, Merten N, Hennen S, Müller A, Blättermann S, Mohr-Andrä M, Zahn S, Wenzel J, Smith NJ, Gomeza J, Drewke C, Milligan G, Mohr K, Kostenis E (2010) Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat Biotechnol 28:943–949. doi:10.1038/nbt.1671

    Article  Google Scholar 

  38. Verrier F, An S, Ferrie AM, Sun H, Kyoung M, Fang Y, Benkovic SJ (2011) GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis. Nat Chem Biol 7:909–915

    Article  CAS  Google Scholar 

  39. Ferrie AM, Wang C, Deng H, Fang Y (2013) Label-free optical biosensor with microfluidics identifies an intracellular signalling wave mediated through the β2-adrerengic receptor. Integr Biol 5:1253–1261

    Article  CAS  Google Scholar 

  40. Li G, Lai F, Fang Y (2012) Modulating cell-cell communication with a high-throughput label-free cell assay. J Lab Automation 17:6–15. doi:10.1177/2211068211424548

    Article  CAS  Google Scholar 

  41. Pai S, Verrier F, Sun H, Hu H, Ferrie AM, Eshraghi A, Fang Y (2012) Dynamic mass redistribution assay decodes differentiation of a neural progenitor stem cell. J Biomol Screen 17:1180–1191. doi:10.1177/1087057112455059

    Article  Google Scholar 

  42. Fang Y (2013) Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J Pharmacol Toxicol Methods 67:69–81. doi:10.1016/j.vascn.2013.01.004

    Article  CAS  Google Scholar 

  43. Fang Y (2014) Label-free drug discovery. Front Pharmacol 5:52. doi:10.3389/fphar.2014.00052

    Article  Google Scholar 

  44. Fang Y (2014) Label-free cell phenotypic drug discovery. Comb Chem High Throughput Screen 17(7):566–578

    Article  CAS  Google Scholar 

  45. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13:283–296. doi:10.1038/nrm3330

    CAS  Google Scholar 

  46. Kasinskas RW, Venkatasubramanian R, Forbes NS (2014) Rapid uptake of glucose and lactate, and not hypoxia, induces apoptosis in three-dimensional tumor tissue culture. Integr Biol 6:399–410. doi:10.1039/c4ib00001c

    Article  CAS  Google Scholar 

  47. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  Google Scholar 

  48. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292. doi:10.1016/j.cell.2011.09.024

    Article  CAS  Google Scholar 

  49. Stetler-Stevenson WG, Aznavoorian S, Liotta LA (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9:541–573

    Article  CAS  Google Scholar 

  50. Poincloux R, Lizárraga F, Chavrier P (2009) Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci 122:3015–3024. doi:10.1242/jcs.034561

    Article  CAS  Google Scholar 

  51. Lee C, Kim JS, Waldman T (2004) PTEN gene targeting reveals a radiation-induced size checkpoint in human cancer cells. Cancer Res 64:6906–6914. doi:10.1158/0008-5472.CAN-04-1767

    Article  CAS  Google Scholar 

  52. Samuels Y, Diaz LA Jr, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2005) Mutant PI3K3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7:561–573. doi:10.1016/j.ccr.2005.05.014

    Article  CAS  Google Scholar 

  53. Fang Y (2015) Label-free cell phenotypic profiling and screening: techniques, experimental design and data assessment. Methods Pharmacol Tox 53:233–252. doi:10.1007/978-1-4939-2617-6_2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Fang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Febles, N.K., Chandrasekaran, S., Fang, Y. (2017). Resonant Waveguide Grating Imager for Single Cell Monitoring of the Invasion of 3D Speheroid Cancer Cells Through Matrigel. In: Rasooly, A., Prickril, B. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1571. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6848-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6848-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6846-6

  • Online ISBN: 978-1-4939-6848-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics