Skip to main content

Isolation of Mouse Stromal Vascular Cells for Monolayer Culture

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1566))

Abstract

Positive energy balance contributes to adipose tissue expansion and dysfunction, which accounts largely for obesity and related metabolic disorders. Thermogenic fat can dissipate energy, activation or induction of which may promote energy balance and address the pressing health issues. Recent studies have shown that stromal vascular fraction (SVF) from white adipose tissue (WAT) can develop both white and brown-like adipocyte phenotypes, thus serving as a unique model to study adipogenesis and thermogenesis. Here, we describe a protocol for effective isolation of mouse SVF from WAT, induction of differentiation, and detection of adipogenesis. Success tips for isolation and culture of SVF are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Liu L, Zou P, Zheng L et al (2015) Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis 6:e1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poloz Y, Stambolic V (2015) Obesity and cancer, a case for insulin signaling. Cell Death Dis 6:e2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139

    Article  CAS  PubMed  Google Scholar 

  4. Goossens GH, Blaak EE (2015) Adipose tissue dysfunction and impaired metabolic health in human obesity: a matter of oxygen? Front Endocrinol 6:55

    Article  Google Scholar 

  5. Abranches MV, Oliveira FC, Conceicao LL, Peluzio MD (2015) Obesity and diabetes: the link between adipose tissue dysfunction and glucose homeostasis. Nutr Res Rev 28:121–132

    Article  CAS  PubMed  Google Scholar 

  6. Manna P, Jain SK (2015) Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord 13:423–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saltiel AR (2012) Insulin resistance in the defense against obesity. Cell Metab 15:798–804

    Article  CAS  PubMed  Google Scholar 

  8. Hill JO, Wyatt HR, Peters JC (2012) Energy balance and obesity. Circulation 126:126–132

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cheng Z, Almeida FA (2014) Mitochondrial alteration in type 2 diabetes and obesity: an epigenetic link. Cell Cycle 13:890–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cummins TD, Holden CR, Sansbury BE et al (2014) Metabolic remodeling of white adipose tissue in obesity. Am J Physiol Endocrinol Metab 307:E262–E277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van der Klaauw AA, Farooqi IS (2015) The hunger genes: pathways to obesity. Cell 161:119–132

    Article  PubMed  Google Scholar 

  12. Cheng Z, Ristow M (2013) Mitochondria and metabolic homeostasis. Antioxid Redox Signal 19:240–242

    Article  CAS  PubMed  Google Scholar 

  13. Nedergaard J, Cannon B (2014) The browning of white adipose tissue: some burning issues. Cell Metab 20:396–407

    Article  CAS  PubMed  Google Scholar 

  14. Bartelt A, Heeren J (2014) Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10:24–36

    Article  CAS  PubMed  Google Scholar 

  15. Emont MP, Yu H, Wu J (2015) Transcriptional control and hormonal response of thermogenic fat. J Endocrinol 225:R35–R47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu J, Jun H, McDermott JR (2015) Formation and activation of thermogenic fat. Trends Genet 31:232–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Berry DC, Stenesen D, Zeve D, Graff JM (2013) The developmental origins of adipose tissue. Development 140:3939–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131:242–256

    Article  CAS  PubMed  Google Scholar 

  19. Lafontan M (2012) Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol 302:C327–C359

    Article  CAS  PubMed  Google Scholar 

  20. Lee YH, Petkova AP, Mottillo EP, Granneman JG (2012) In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 15:480–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosenwald M, Perdikari A, Rulicke T, Wolfrum C (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659–667

    Article  CAS  PubMed  Google Scholar 

  22. Wu J, Bostrom P, Sparks LM et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zou P, Liu L, Zheng L et al (2014) Targeting FoxO1 with AS1842856 suppresses adipogenesis. Cell Cycle 13:3759–3767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Emont MP, Yu H, Jun H et al (2015) Using a 3D culture system to differentiate visceral adipocytes in vitro. Endocrinology 156:4761–4768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported in part by USDA National Institute of Food and Agriculture Hatch Project 1007334 (Z.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Liu, L., Zheng, L.D., Donnelly, S.R., Emont, M.P., Wu, J., Cheng, Z. (2017). Isolation of Mouse Stromal Vascular Cells for Monolayer Culture. In: Wu, J. (eds) Thermogenic Fat. Methods in Molecular Biology, vol 1566. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6820-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6820-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6819-0

  • Online ISBN: 978-1-4939-6820-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics