Skip to main content

Reproducibility Issues: Avoiding Pitfalls in Animal Inflammation Models

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1559))

Abstract

In light of an enhanced awareness of ethical questions and ever increasing costs when working with animals in biomedical research, there is a dedicated and sometimes fierce debate concerning the (lack of) reproducibility of animal models and their relevance for human inflammatory diseases. Despite evident advancements in searching for alternatives, that is, replacing, reducing, and refining animal experiments—the three R’s of Russel and Burch (1959)—understanding the complex interactions of the cells of the immune system, the nervous system and the affected tissue/organ during inflammation critically relies on in vivo models. Consequently, scientific advancement and ultimately novel therapeutic interventions depend on improving the reproducibility of animal inflammation models. As a prelude to the remaining hands-on protocols described in this volume, here, we summarize potential pitfalls of preclinical animal research and provide resources and background reading on how to avoid them.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Begley CG, Ellis LM (2012) Drug development: raise standards for preclinical cancer research. Nature 483:531–533

    Article  CAS  PubMed  Google Scholar 

  2. Prinz F, Schlange T, Asadullah K (2011) Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov 10:712

    Article  CAS  PubMed  Google Scholar 

  3. Lara-Pezzi E, Menasche P, Trouvin JH, Badimon L, Ioannidis JP, Wu JC et al (2015) Guidelines for translational research in heart failure. J Cardiovasc Transl Res 8:3–22

    Article  PubMed  Google Scholar 

  4. Tsilidis KK, Panagiotou OA, Sena ES, Aretouli E, Evangelou E, Howells DW et al (2013) Evaluation of excess significance bias in animal studies of neurological diseases. PLoS Biol 11:e1001609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ioannidis JP (2012) Extrapolating from animals to humans. Sci Transl Med 4:151ps15

    Article  PubMed  Google Scholar 

  6. Kitsios GD, Tangri N, Castaldi PJ, Ioannidis JP (2010) Laboratory mouse models for the human genome-wide associations. PLoS One 5:e13782

    Article  PubMed  PubMed Central  Google Scholar 

  7. Begley CG, Ioannidis JP (2015) Reproducibility in science: improving the standard for basic and preclinical research. Circ Res 116:116–126

    Article  CAS  PubMed  Google Scholar 

  8. Ioannidis JP (2014) How to make more published research true. PLoS Med 11:e1001747

    Article  PubMed  PubMed Central  Google Scholar 

  9. Casadevall A, Fang FC (2012) Reforming science: methodological and cultural reforms. Infect Immun 80:891–896

    Article  PubMed  PubMed Central  Google Scholar 

  10. Casadevall A, Fang FC (2013) Is the nobel prize good for science? FASEB J 27:4682–4690

    Article  CAS  PubMed  Google Scholar 

  11. Casadevall A, Fang FC (2014) Causes for the persistence of impact factor mania. mBio 5:e00064–14

    PubMed  PubMed Central  Google Scholar 

  12. Casadevall A, Fang FC (2015) Impacted science: impact is not importance. mBio 6:e01593–15

    PubMed  PubMed Central  Google Scholar 

  13. Fang FC, Casadevall A (2011) Retracted science and the retraction index. Infect Immun 79:3855–3859

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fang FC, Casadevall A (2012) Reforming science: structural reforms. Infect Immun 80:897–901

    Article  PubMed  Google Scholar 

  15. Fang FC, Casadevall A (2015) Competitive science: is competition ruining science? Infect Immun 83:1229–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mullane K, Winquist RJ, Williams M (2014) Translational paradigms in pharmacology and drug discovery. Biochem Pharmacol 87:189–210

    Article  CAS  PubMed  Google Scholar 

  17. Bacchetti P, Deeks SG, McCune JM (2011) Breaking free of sample size dogma to perform innovative translational research. Sci Transl Med 3:87ps24

    Article  PubMed  PubMed Central  Google Scholar 

  18. Macleod MR, Lawson McLean A, Kyriakopoulou A, Serghiou S, de Wilde A, Sherratt N et al (2015) Risk of bias in reports of in vivo research: a focus for improvement. PLoS Biol 13:e1002273

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mazumdar M, Banerjee S, Van Epps HL (2010) Improved reporting of statistical design and analysis: guidelines, education, and editorial policies. Methods Mol Biol 620:563–598

    Article  CAS  PubMed  Google Scholar 

  20. Plant AL, Locascio LE, May WE, Gallagher PD (2014) Improved reproducibility by assuring confidence in measurements in biomedical research. Nat Methods 11:895–898

    Article  CAS  PubMed  Google Scholar 

  21. Schooler JW (2014) Metascience could rescue the ‘replication crisis’. Nature 515:9

    Article  CAS  PubMed  Google Scholar 

  22. Baker M (2015) Reproducibility crisis: blame it on the antibodies. Nature 521:274–276

    Article  CAS  PubMed  Google Scholar 

  23. Iorns E, Chong C (2014) New forms of checks and balances are needed to improve research integrity. F1000Res 3:119

    PubMed  PubMed Central  Google Scholar 

  24. Couchman JR (2014) Peer review and reproducibility. Crisis or time for course correction? J Histochem Cytochem 62:9–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mullane K, Williams M (2015) Unknown unknowns in biomedical research: does an inability to deal with ambiguity contribute to issues of irreproducibility? Biochem Pharmacol 97:133–136

    Article  CAS  PubMed  Google Scholar 

  26. Anon (2013) Announcement: reducing our irreproducibility. Nature 496:398

    Article  Google Scholar 

  27. Munafo M, Noble S, Browne WJ, Brunner D, Button K, Ferreira J et al (2014) Scientific rigor and the art of motorcycle maintenance. Nat Biotechnol 32:871–873

    Article  CAS  PubMed  Google Scholar 

  28. Button KS, Munafo MR (2014) Incentivising reproducible research. Cortex 51:107–108

    Article  PubMed  Google Scholar 

  29. Shoda LK, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA et al (2005) A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23:115–126

    Article  CAS  PubMed  Google Scholar 

  30. Frye SV, Arkin MR, Arrowsmith CH, Conn PJ, Glicksman MA, Hull-Ryde EA et al (2015) Tackling reproducibility in academic preclinical drug discovery. Nat Rev Drug Discov 14:733–734

    Article  CAS  PubMed  Google Scholar 

  31. Katsnelson A (2010) Biologists tackle cells’ identity crisis. Nature 465:537

    Article  CAS  PubMed  Google Scholar 

  32. Tittel AP, Heuser C, Ohliger C, Llanto C, Yona S, Hammerling GJ et al (2012) Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice. Nat Methods 9:385–390

    Article  CAS  PubMed  Google Scholar 

  33. Bennett CL, Clausen BE (2007) DC ablation in mice: promises, pitfalls, and challenges. Trends Immunol 28:525–531

    Article  CAS  PubMed  Google Scholar 

  34. Walter A, Schafer M, Cecconi V, Matter C, Urosevic-Maiwald M, Belloni B et al (2013) Aldara activates TLR7-independent immune defence. Nat Commun 4:1560

    Article  PubMed  Google Scholar 

  35. Davis J, Maillet M, Miano JM, Molkentin JD (2012) Lost in transgenesis: a user’s guide for genetically manipulating the mouse in cardiac research. Circ Res 111:761–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Geghman K, Li C (2011) Practical considerations of genetic rodent models for neurodegenerative diseases. Methods Mol Biol 793:185–193

    Article  CAS  PubMed  Google Scholar 

  37. National Academy of Sciences, National Academy of Engineering (US) and Institute of Medicine (US) Committee on Science, Engineering, and Public Policy (2009) On being a scientist: a guide to responsible conduct in research. The National Academies Press, Washington (DC), USA

    Google Scholar 

  38. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2012) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Osteoarthritis Cartilage 20:256–260

    Article  CAS  PubMed  Google Scholar 

  40. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW et al (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490:187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hicks D, Wouters P, Waltman L, de Rijcke S, Rafols I (2015) Bibliometrics: the Leiden manifesto for research metrics. Nature 520:429–431

    Article  PubMed  Google Scholar 

  42. Halsey LG, Curran-Everett D, Vowler SL, Drummond GB (2015) The fickle P value generates irreproducible results. Nat Methods 12:179–185

    Article  CAS  PubMed  Google Scholar 

  43. Richter SH, Garner JP, Auer C, Kunert J, Wurbel H (2010) Systematic variation improves reproducibility of animal experiments. Nat Methods 7:167–168

    Article  CAS  PubMed  Google Scholar 

  44. Kenett RS, Shmueli G (2015) Clarifying the terminology that describes scientific reproducibility. Nat Methods 12:699

    Article  CAS  PubMed  Google Scholar 

  45. The Reproducibility Initiative. Available from: http://validation.scienceexchange.com/ - /reproducibility-initiative.

  46. Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ et al (2015) SCIENTIFIC STANDARDS. Promoting an open research culture. Science 348:1422–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. TOP guidelines. Available from: https://cos.io/top/

  48. Nature author policies. Available from: http://www.nature.com/authors/policies/checklist.pdf

  49. METRICS. Available from: http://metrics.stanford.edu/

  50. Protocol Exchange. Available from: http://www.nature.com/protocolexchange

  51. Masca NG, Hensor EM, Cornelius VR, Buffa FM, Marriott HM, Eales JM et al (2015) RIPOSTE: a framework for improving the design and analysis of laboratory-based research. ELife 4:e05519

    Article  PubMed Central  Google Scholar 

  52. World Health Organization. Available from: http://www.who.int/ihr/training/laboratory_quality/doc/en/

  53. ICMJE. Available from: http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html

  54. EQUATOR. Available from: http://www.equator-network.org/reporting-guidelines/

  55. FASEB guidelines. Available from: http://www.faseb.org/Science-Policy-and-Advocacy/Science-Policy-and-Research-Issues/Research-Reproducibility.aspx

  56. Gilson pipetting guide. Available from: http://www.gilson.com/en/GilsonProducts/PipetteAccessories/GilsonGuidetoPipetting-ThirdEdition.aspx - .Vq30km_2aUk

  57. Mettler Toledo pipetting technique. Available from: https://http://www.youtube.com/watch?v=X73R_4cntpA

  58. Eppendorf pipetting guidelines. Available from: en/155258_SOP.pdf

    Google Scholar 

  59. ARRIVE guidelines. Available from: https://http://www.nc3rs.org.uk/arrive-guidelines

  60. ILAR (2011) Guidance for the description of animal research in scientific publications. The National Academies Collection: Reports funded by National Institutes of Health. Washington (DC), USA

    Google Scholar 

  61. Hooijmans CR, Leenaars M, Ritskes-Hoitinga M (2010) A gold standard publication checklist to improve the quality of animal studies, to fully integrate the Three Rs, and to make systematic reviews more feasible. Altern Lab Anim 38:167–182

    CAS  PubMed  Google Scholar 

  62. Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43

    Article  PubMed  PubMed Central  Google Scholar 

  63. IMPC. Available from: http://www.mousephenotype.org/

  64. Nc3Rs design assistant. Available from: https://eda.nc3rs.org.uk/

  65. ICLAC. Available from: http://iclac.org/resources/

  66. Capes-Davis A, Theodosopoulos G, Atkin I, Drexler HG, Kohara A, MacLeod RA et al (2010) Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer 127:1–8

    Article  CAS  PubMed  Google Scholar 

  67. Yu M, Selvaraj SK, Liang-Chu MM, Aghajani S, Busse M, Yuan J et al (2015) A resource for cell line authentication, annotation and quality control. Nature 520:307–311

    Article  CAS  PubMed  Google Scholar 

  68. Geraghty RJ, Capes-Davis A, Davis JM, Downward J, Freshney RI, Knezevic I et al (2014) Guidelines for the use of cell lines in biomedical research. Br J Cancer 111:1021–1046

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ward JM, Rehg JE (2014) Rodent immunohistochemistry: pitfalls and troubleshooting. Vet Pathol 51:88–101

    Article  CAS  PubMed  Google Scholar 

  70. Hewitt SM, Baskin DG, Frevert CW, Stahl WL, Rosa-Molinar E (2014) Controls for immunohistochemistry: the Histochemical Society’s standards of practice for validation of immunohistochemical assays. J Histochem Cytochem 62:693–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. North AJ (2006) Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. J Cell Biol 172:9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. J. Immunol. Available from: http://www.jimmunol.org/site/misc/DigitalImageDosandDonts.pdf

  73. Gassmann M, Grenacher B, Rohde B, Vogel J (2009) Quantifying Western blots: pitfalls of densitometry. Electrophoresis 30:1845–1855

    Article  CAS  PubMed  Google Scholar 

  74. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  75. ENCODE guidelines. Available from: https://http://www.encodeproject.org/about/experiment-guidelines/

  76. Roadmap Epigenomics. Available from: http://www.roadmapepigenomics.org/protocols/type/data/

  77. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22:1813–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. MIBBI. Available from: https://biosharing.org/standards/?selected_facets=isMIBBI:true

  79. Obokata H, Wakayama T, Sasai Y, Kojima K, Vacanti MP, Niwa H et al (2014) Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature 505:641–647

    Article  CAS  PubMed  Google Scholar 

  80. De Los Angeles A, Ferrari F, Fujiwara Y, Mathieu R, Lee S, Tu HC, Ross S, Chou S, Nguyen M, Wu Z, Theunissen TW, Powell BE, Imsoonthornruksa S, Chen J, Borkent M, Krupalnik V, Lujan E, Wernig M, Hanna JH, Hochedlinger K, Pei D, Jaenisch R, Deng H, Orkin SH, Park PJ, Daley GQ (2015) Failure to replicate the STAP cell phenomenon. Nature 525(7570):E6–E9. doi: 10.1038/nature15513

    Google Scholar 

  81. Stainier DY, Kontarakis Z, Rossi A (2015) Making sense of anti-sense data. Dev Cell 32:7–8

    Article  CAS  PubMed  Google Scholar 

  82. Sternberg SH, Doudna JA (2015) Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell 58:568–74

    Google Scholar 

  83. Doudna JA, Charpentier E (2016) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  Google Scholar 

  84. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES et al (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14:365–376

    Article  CAS  PubMed  Google Scholar 

  85. Franken L, Klein M, Spasova M, Elsukova A, Wiedwald U, Welz M et al (2015) Splenic red pulp macrophages are intrinsically superparamagnetic and contaminate magnetic cell isolates. Sci Rep 5:12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Boon L, Brok HP, Bauer J, Ortiz-Buijsse A, Schellekens MM, Ramdien-Murli S et al (2001) Prevention of experimental autoimmune encephalomyelitis in the common marmoset (Callithrix jacchus) using a chimeric antagonist monoclonal antibody against human CD40 is associated with altered B cell responses. J Immunol 167:2942–2949

    Article  CAS  PubMed  Google Scholar 

  87. Boon L, den Hartog MT, Laman JD (2002) Antagonistic CD40 Mab 5D12 on its way to the clinic. In: Korte R, Vogel F, Weinbauer GF (eds) Primate models in pharmaceutical drug development. Waxmann, Munster, Germany, pp 127–146

    Google Scholar 

  88. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF et al (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87

    Article  PubMed  PubMed Central  Google Scholar 

  89. Russell WMS, Burch LR (1959) The principles of humane experimental technique. Universities Federation for Animal Welfare. Wheathampstead, England (reprinted in 1992)

    Google Scholar 

  90. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA et al (2016) Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532:512–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reese TA, Bi K, Kambal A, Filali-Mouhim A, Beura LK, Burger MC et al (2016) Sequential infection with common pathogens promotes human-like immune gene expression and altered vaccine response. Cell Host Microbe 19:713–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nuzzo R (2014) Scientific method: statistical errors. Nature 506:150–152

    Article  CAS  PubMed  Google Scholar 

  93. Van Epps HL (2009) JEM’s 2009 tune-up. J Exp Med 206:968–969

    Article  PubMed Central  Google Scholar 

  94. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Takao K, Hagihara H, Miyakawa T (2015) Reply to Warren et al. and Shay et al.: Commonalities across species do exist and are potentially important. Proc Natl Acad Sci U S A 112:E347–E348

    Article  CAS  PubMed  Google Scholar 

  96. Shay T, Lederer JA, Benoist C (2015) Genomic responses to inflammation in mouse models mimic humans: we concur, apples to oranges comparisons won’t do. Proc Natl Acad Sci U S A 112:E346

    Article  CAS  PubMed  Google Scholar 

  97. Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R (2015) Animal models of aging research: implications for human aging and age-related diseases. Annu Rev Anim Biosci 3:283–303

    Article  CAS  PubMed  Google Scholar 

  98. Amor S, Baker D (2012) Checklist for reporting and reviewing studies of experimental animal models of multiple sclerosis and related disorders. Mult Scler Relat Disord 1:111–115

    Article  PubMed  Google Scholar 

  99. Baker D, Amor S (2014) Experimental autoimmune encephalomyelitis is a good model of multiple sclerosis if used wisely. Mult Scler Relat Disord 3:555–564

    Article  PubMed  Google Scholar 

  100. Llovera G, Hofmann K, Roth S, Salas-Perdomo A, Ferrer-Ferrer M, Perego C et al (2015) Results of a preclinical randomized controlled multicenter trial (pRCT): anti-CD49d treatment for acute brain ischemia. Sci Transl Med 7:299ra121

    Article  PubMed  Google Scholar 

  101. Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M et al (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10:1063–1067

    Article  CAS  PubMed  Google Scholar 

  102. Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7:681–685

    Article  CAS  PubMed  Google Scholar 

  103. Bene MC, Marti GE (2013) ICSH/ICCS practice guidelines special issue. Cytometry B Clin Cytom 84:279–280

    Article  PubMed  Google Scholar 

  104. Grens K (2015) The great big clean-up. Scientist 29:50–55

    Google Scholar 

  105. Masters JR (2012) Cell-line authentication: end the scandal of false cell lines. Nature 492:186

    Article  CAS  PubMed  Google Scholar 

  106. Lorsch JR, Collins FS, Lippincott-Schwartz J (2014) Cell biology. Fixing problems with cell lines. Science 346:1452–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hughes P, Marshall D, Reid Y, Parkes H, Gelber C (2007) The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques 43:575

    Article  CAS  PubMed  Google Scholar 

  108. Callaway E (2014) Contamination hits cell work. Nature 511:518

    Article  CAS  PubMed  Google Scholar 

  109. Di Girolamo N, Chow S, Richardson A, Wakefield D (2016) Contamination of primary human corneal epithelial cells with an SV40-transformed human corneal epithelial cell line: a lesson for cell biologists in good laboratory practice. Invest Ophthalmol Vis Sci 57:611–616

    Article  PubMed  Google Scholar 

  110. Nelson-Rees WA, Daniels DW, Flandermeyer RR (1981) Cross-contamination of cells in culture. Science 212:446–452

    Article  CAS  PubMed  Google Scholar 

  111. Clément V, Marino D, Cudalbu C, Hamou MF, Mlynarik V, de Tribolet N, Dietrich PY, Gruetter R, Hegi ME, Radovanovic I (2010) Marker-independent identification of glioma-initiating cells. Nat Methods 7(3):224–228. doi:10.1038/nmeth.1430

  112. Van Bergen NJ, Wood JP, Chidlow G, Trounce IA, Casson RJ, Ju WK et al (2009) Recharacterization of the RGC-5 retinal ganglion cell line. Invest Ophthalmol Vis Sci 50:4267–4272

    Article  PubMed  Google Scholar 

  113. Anon (2015) STAP revisited. Nature 525:426

    Article  Google Scholar 

  114. Brembs B, Button K, Munafo M (2013) Deep impact: unintended consequences of journal rank. Front Hum Neurosci 7:291

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. C.M.A. Thuring and Drs. M. van der Meulen-Frank, veterinarians at the UMC Groningen animal facility (CDP) for textual contributions on animal work and Box 3, and Dr. G.J. te Meerman for contributing to Box 1. In addition, we are grateful to several people for providing items for Box 3, including Drs. Janneke Samsom, Bart Eggen, Louis Boon, Nieske Brouwer and Chaitali Paul. Funding was partly provided by NWO VENI (#016.161.072) to S.M.K., and by the Dutch MS Research Foundation (program grant to the MS Center Noord Nederland, MSCNN). B.E.C. was an NWO VIDI fellow (#917.76.365) and is currently supported by the DFG (CL 419/2-1) and the Research Center for Immunotherapy (FZI) Mainz.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jon D. Laman Ph.D. or Björn E. Clausen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Laman, J.D., Kooistra, S.M., Clausen, B.E. (2017). Reproducibility Issues: Avoiding Pitfalls in Animal Inflammation Models. In: Clausen, B., Laman, J. (eds) Inflammation. Methods in Molecular Biology, vol 1559. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6786-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6786-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6784-1

  • Online ISBN: 978-1-4939-6786-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics