Skip to main content

Determination of Structure and Micellar Interactions of Small Antimicrobial Peptides by Solution-State NMR

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1548))

Abstract

NMR spectroscopy is a well-established technique to determine the structure of peptides and small proteins in solution, also when bound to detergent micelles or phospholipid bicelles. The structure of the peptide alone is, however, not conveying the full picture, if the peptide is bound to a micelle, since it does not tell anything about the orientation of the peptide in the micelle. This article describes how to obtain that information together with information on peptide structure.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Su Y, Li S, Hong M (2013) Cationic membrane peptides: atomic-level insight of structure-activity relationships from solid-state NMR. Amino Acids 44:821–833

    Article  CAS  PubMed  Google Scholar 

  2. Dittmer J, Thøgersen L, Underhaug J et al (2009) Incorporation of antimicrobial peptides into membranes: a combined liquid-state NMR and molecular dynamics study of alamethicin in DMPC/DHPC bicelles. J Phys Chem B 113:6928–6937

    Article  CAS  PubMed  Google Scholar 

  3. Raschle T, Hiller S, Etzkorn M et al (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20:471–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mäler L (2012) Solution NMR studies of peptide-lipid interactions in model membranes. Mol Membr Biol 29:155–176

    Article  PubMed  Google Scholar 

  5. Botta M (2000) Second coordination sphere water molecules and relaxivity of gadolinium(III) complexes: implications for MRI contrast agents. Eur J Inorg Chem 2000:399–407

    Article  Google Scholar 

  6. Brown LR, Braun W, Kumar A et al (1982) High resolution nuclear magnetic resonance studies of the conformation and orientation of melittin bound to a lipid-water interface. Biophys J 37:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lindberg M, Biverståhl H, Gräslund A et al (2003) Structure and positioning comparison of two variants of penetratin in two different membrane mimicking systems by NMR. Eur J Biochem 270:3055–3063

    Article  CAS  PubMed  Google Scholar 

  8. Wimmer R, Andersen KK, Vad B et al (2006) Versatile interactions of the antimicrobial peptide novispirin with detergents and lipids. Biochemistry 45:481–497

    Article  CAS  PubMed  Google Scholar 

  9. Pintacuda G, Otting G (2002) Identification of protein surfaces by NMR measurements with a pramagnetic Gd(III) chelate. J Am Chem Soc 124:372–373

    Article  CAS  PubMed  Google Scholar 

  10. Respondek M, Madl T, Gobl C et al (2007) Mapping the orientation of helices in micelle-bound peptides by paramagnetic relaxation waves. J Am Chem Soc 129:5228–5234

    Article  CAS  PubMed  Google Scholar 

  11. Zangger K, Respondek M, Gobl C et al (2009) Positioning of micelle-bound peptides by paramagnetic relaxation enhancements. J Phys Chem B 113:4400–4406

    Article  CAS  PubMed  Google Scholar 

  12. Franzmann M, Otzen D, Wimmer R (2009) Quantitative use of paramagnetic relaxation enhancements for determining orientations and insertion depths of peptides in micelles. Chembiochem 10:2339–2347

    Article  CAS  PubMed  Google Scholar 

  13. Schrank E, Wagner GE, Zangger K (2013) Solution NMR studies on the orientation of membrane-bound peptides and proteins by paramagnetic probes. Molecules 18:7407–7435

    Article  CAS  PubMed  Google Scholar 

  14. Vad B, Thomsen LA, Bertelsen K et al (2010) Divorcing folding from function: how acylation affects the membrane-perturbing properties of an antimicrobial peptide. Biochim Biophys Acta 1804:806–820

    Article  CAS  PubMed  Google Scholar 

  15. Uggerhøj LE, Poulsen TJ, Munk JK et al (2015) Rational design of alpha-helical antimicrobial peptides: do’s and don’ts. Chembiochem 16:242–253

    Article  PubMed  Google Scholar 

  16. Uggerhøj LE, Munk JK, Hansen PR et al (2014) Structural features of peptoid-peptide hybrids in lipid-water interfaces. FEBS Lett 588:3291–3297

    Article  PubMed  Google Scholar 

  17. Münch D, Müller A, Schneider T et al (2014) The Lantibiotic NAI-107 Binds to Bactoprenol-bound Cell Wall Precursors and Impairs Membrane Functions. J Biol Chem 289:12063–12076

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hwang TL, Shaka AJ (1995) Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Mag Res A 112:275–279

    Article  CAS  Google Scholar 

  19. Bax A, Davis DG (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Mag Res 65:355–360

    CAS  Google Scholar 

  20. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York, NY

    Google Scholar 

  21. Güntert P (1997) Calculating protein structures from NMR data. Methods Mol Biol 60:157–194

    PubMed  Google Scholar 

  22. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  CAS  PubMed  Google Scholar 

  23. Shen Y, Delaglio F, Cornilescu G et al (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krieger E, Vriend G (2014) YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics 30:2981–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tieleman DP, van der Spoel D, Berendsen HJC (2000) Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and chain relaxation. J Phys Chem B 104:6380–6388

    Article  CAS  Google Scholar 

  27. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA-a self-parameterizing force field. Proteins 47:393–402

    Article  CAS  PubMed  Google Scholar 

  28. Krieger E, Joo K, Lee J et al (2009) Improving physical realism, stereochemistry and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77:114–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Papoulis A (1991) Probability, random variables and stochastic processes. McGraw Hill, New York, NY

    Google Scholar 

  30. Oktaviani NA, Risør MW, Lee Y-H et al (2015) Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide. J Biomol NMR 62:129–142

    Article  CAS  PubMed  Google Scholar 

  31. Lauterwein J, Bösch C, Brown LR et al (1979) Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim Biophys Acta 556:244–264

    Article  CAS  PubMed  Google Scholar 

  32. Gao X, Wong TC (1998) Studies of the binding and structure of adrenocorticotropin peptides in membrane mimics by NMR spectroscopy and pulsed-field gradient diffusion. Biophys J 74:1871–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kallick DA, Tessmer MR, Watts CR et al (1995) The use of dodecylphosphocholine micelles in solution NMR. J Mag Res B 109:60–65

    Article  CAS  Google Scholar 

  34. Abel S, Dupradeau F-Y, Marchi F (2012) Molecular dynamics simulations of a characteristic DPC micelle in water. J Chem Theory Comput 8:4610–4623

    Article  CAS  PubMed  Google Scholar 

  35. Göbl C, Dulle M, Hohlweg W et al (2010) Influence of phosphocholine alkyl chain length on peptide-micelle interactions and micellar size and shape. J Phys Chem B 114:4717–4724

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Villum Kann Rasmussen Foundation (BioNET) and the Danish Research Councils for Free and for Strategic Research (DanCARD, project number 09-067075). The NMR laboratory at Aalborg University is supported by the Obel, SparNord, and Carlsberg Foundations. Gd(DTPA-BMA) was a gift from the local hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Wimmer .

Editor information

Editors and Affiliations

Supplementary Material

Supplementary Material

Supplementary material is available electronically from the author’s university homepage:

http://www.en.bio.aau.dk/research/biotechnology/nmr-spectroscopy/mmib-supplementary

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wimmer, R., Uggerhøj, L.E. (2017). Determination of Structure and Micellar Interactions of Small Antimicrobial Peptides by Solution-State NMR. In: Hansen, P. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 1548. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6737-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6737-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6735-3

  • Online ISBN: 978-1-4939-6737-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics