Skip to main content

Studying the Mechanism of Membrane Permeabilization Induced by Antimicrobial Peptides Using Patch-Clamp Techniques

  • Protocol
  • First Online:
Antimicrobial Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1548))

Abstract

Many short peptides selectively permeabilize the bacteria plasma membrane, leading to their lyses and death: they are therefore a source of antibacterial molecules and inspiration for novel and more selective drugs, which may have wider application in many other fields, as selective anticancer drugs. In this chapter, it is presented a new method to investigate the permeabilization properties of antimicrobial peptides under strict physiological conditions, employing the patch-clamp technique coupled to a fast perfusion system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilbert RJ, Dalla Serra M, Froelich CJ, Wallace MI, Anderluh G (2014) Membrane pore formation at protein-lipid interfaces. Trends Biochem Sci 39:510–516

    Article  CAS  PubMed  Google Scholar 

  2. Rawat A, Nagaraj R (2014) Peptide self-assembly: from toxins to amyloid fibrils and nanotubes. Curr Top Med Chem 14:740–746

    Article  CAS  PubMed  Google Scholar 

  3. Fuertes G, Giménez D, Esteban-Martín S, Sánchez-Muñoz OL, Salgado J (2011) A lipocentric view of peptide-induced pores. Eur Biophys J 40:399–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bockmann RA, Hac A, Heimburg T, Grubmuller H (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rispoli G, Sather WA, Detwiler PB (1993) Visual transduction in dialyzed detached rod outer segments from lizard retina. J Physiol 465:513–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fasoli A, Salomone F, Benedusi M, Boccardi C, Rispoli G, Beltram F, Cardarelli F (2014) Mechanistic insight into CM18-Tat11 peptide membrane-perturbing action by whole-cell patch-clamp recording. Molecules 19:9228–9239

    Article  PubMed  Google Scholar 

  7. Vedovato N, Rispoli G (2007) A novel technique to study pore-forming peptides in a natural membrane. Eur Biophys J 36:771–778

    Article  CAS  PubMed  Google Scholar 

  8. Aquila M, Benedusi M, Koch KW, Dell’Orco D, Rispoli G (2013) Divalent cations modulate membrane binding and pore formation of a potent antibiotic peptide analog of alamethicin. Cell Calcium 53:180–186

    Article  CAS  PubMed  Google Scholar 

  9. Pusch M, Neher E (1988) Rates of diffusional exchange between small cells and a measuring patch pipette. Pflugers Arch 411:204–211

    Article  CAS  PubMed  Google Scholar 

  10. Benedusi M, Aquila M, Milani A, Rispoli G (2011) A pressure-polishing set-up to fabricate patch pipettes that seal on virtually any membrane, yielding low access resistance and efficient intracellular perfusion. Eur Biophys J 40:1215–1223

    Article  PubMed  Google Scholar 

  11. Aquila M, Benedusi M, Fasoli A, Rispoli G (2015) Characterization of zebrafish green cone photoresponse recorded with pressure-polished patch pipettes, yielding efficient intracellular dialysis. PLoS One 10:e0141727

    Article  PubMed  PubMed Central  Google Scholar 

  12. Madan V, Sánchez-Martínez S, Vedovato N, Rispoli G, Carrasco L, Nieva JL (2007) Plasma membrane-porating domain in poliovirus 2B protein. A short peptide mimics viroporin activity. J Mol Biol 374:951–964

    Article  CAS  PubMed  Google Scholar 

  13. Royle J, Dobson SJ, Müller M, Macdonald A (2015) Emerging roles of viroporins encoded by DNA viruses: novel targets for antivirals? Viruses 7:5375–5387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Many thanks to Marco Aquila, Mascia Benedusi, Anna Fasoli, and Natascia Vedovato for helping in applying and refining this technique; Andrea Margutti manufactured many custom-made mechanical pieces. This work was supported by Ministero dell’Università e della Ricerca (MIUR), Roma, Italy, Project PRIN 2006 and 2008 (Progetti di Rilevante Interesse Nazionale), and by University of Ferrara, Project FAR 2006–2014 (Fondi di Ateneo per la Ricerca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Rispoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rispoli, G. (2017). Studying the Mechanism of Membrane Permeabilization Induced by Antimicrobial Peptides Using Patch-Clamp Techniques. In: Hansen, P. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 1548. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6737-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6737-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6735-3

  • Online ISBN: 978-1-4939-6737-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics