Skip to main content

Competition for Iron Between Host and Pathogen: A Structural Case Study on Helicobacter pylori

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1535))

Abstract

Helicobacter pylori (H. pylori) is a highly successful bacterial pathogen, which colonizes the stomach of more than half of the world’s population. To colonize and survive in such an acidic and inhospitable niche, H. pylori cells have evolved complex mechanisms to acquire nutrients from human hosts, including iron, an essential nutrient for both the pathogens and host cells. However, human cells also utilize diverse strategies in withholding of irons to prevent the bacterial outgrowth. The competition for iron is the central battlefield between pathogen and host. This mini-review summarizes the updated scenarios of the battle for iron between H. pylori and human host from a structural biology perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Crichton RR, Charloteaux-Wauters M (1987) Iron transport and storage. Eur J Biochem 164(3):485–506

    Article  CAS  PubMed  Google Scholar 

  2. Aisen P, Leibman A, Zweier J (1978) Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem 253(6):1930–1937

    CAS  PubMed  Google Scholar 

  3. Mazurier J, Spik G (1980) Comparative study of the iron-binding properties of human transferrins. I. Complete and sequential iron saturation and desaturation of the lactotransferrin. Biochim Biophys Acta 629(2):399–408

    Article  CAS  PubMed  Google Scholar 

  4. Anderson BF, Baker HM, Norris GE, Rice DW, Baker EN (1989) Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol 209(4):711–734

    Article  CAS  PubMed  Google Scholar 

  5. Jameson GB, Anderson BF, Norris GE, Thomas DH, Baker EN (1998) Structure of human apolactoferrin at 2.0 A resolution. Refinement and analysis of ligand-induced conformational change. Acta Crystallogr Sect D: Biol Crystallogr 54(Pt 6 Pt 2):1319–1335

    Article  CAS  Google Scholar 

  6. Jeffrey PD et al (1998) Ligand-induced conformational change in transferrins: crystal structure of the open form of the N-terminal half-molecule of human transferrin. Biochemistry 37(40):13978–13986

    Article  CAS  PubMed  Google Scholar 

  7. Wally J et al (2006) The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. J Biol Chem 281(34):24934–24944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang N, Zhang H, Wang M, Hao Q, Sun H (2012) Iron and bismuth bound human serum transferrin reveals a partially-opened conformation in the N-lobe. Sci Rep 2:999

    PubMed  PubMed Central  Google Scholar 

  9. Appelmelk BJ et al (1994) Lactoferrin is a lipid A-binding protein. Infect Immun 62(6):2628–2632

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Naidu SS, Svensson U, Kishore AR, Naidu AS (1993) Relationship between antibacterial activity and porin binding of lactoferrin in Escherichia coli and Salmonella typhimurium. Antimicrob Agents Chemother 37(2):240–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stríz I, Trebichavský I (2004) Calprotectin—a pleiotropic molecule in acute and chronic inflammation. Physiol Res 53(3):245–253

    PubMed  Google Scholar 

  12. Brophy MB, Nolan EM (2015) Manganese and microbial pathogenesis: sequestration by the Mammalian immune system and utilization by microorganisms. ACS Chem Biol 10(3):641–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lehmann FS, Burri E, Beglinger C (2015) The role and utility of faecal markers in inflammatory bowel disease. Therap Adv Gastroenterol 8(1):23–36

    Article  PubMed  PubMed Central  Google Scholar 

  14. Damo SM et al (2013) Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci U S A 110(10):3841–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hayden JA, Brophy MB, Cunden LS, Nolan EM (2013) High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface. J Am Chem Soc 135(2):775–787

    Article  CAS  PubMed  Google Scholar 

  16. Nakashige TG, Zhang B, Krebs C, Nolan EM (2015) Human calprotectin is an iron-sequestering host-defense protein. Nat Chem Biol 11(10):765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hood IM, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen–host interface. Nat Rev Microbiol 10(8):525–537

    Article  CAS  PubMed  Google Scholar 

  18. Velayudhan J et al (2000) Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Microbiol 37(2):274–286

    Article  CAS  PubMed  Google Scholar 

  19. Hantke K (2003) Is the bacterial ferrous iron transporter FeoB a living fossil? Trends Microbiol 11(5):192–195

    Article  CAS  PubMed  Google Scholar 

  20. Guilfoyle A et al (2009) Structural basis of GDP release and gating in G protein coupled Fe2+ transport. EMBO J 28(17):2677–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alm RA et al (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397(6715):176–180

    Article  PubMed  Google Scholar 

  22. Tomb JF et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388(6642):539–547

    Article  CAS  PubMed  Google Scholar 

  23. Ferguson AD et al (2002) Structural basis of gating by the outer membrane transporter FecA. Science 295(5560):1715–1719

    Article  CAS  PubMed  Google Scholar 

  24. Yue WW, Grizot S, Buchanan SK (2003) Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA. J Mol Biol 332(2):353–368

    Article  CAS  PubMed  Google Scholar 

  25. Braun V, Braun M (2002) Active transport of iron and siderophore antibiotics. Curr Opin Microbiol 5(2):194–201

    Article  CAS  PubMed  Google Scholar 

  26. Ferguson AD, Deisenhofer J (2004) Metal import through microbial membranes. Cell 116(1):15–24

    Article  CAS  PubMed  Google Scholar 

  27. Senkovich O, Ceaser S, McGee DJ, Testerman TL (2010) Unique host iron utilization mechanisms of Helicobacter pylori revealed with iron-deficient chemically defined media. Infect Immun 78(5):1841–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Husson MO, Legrand D, Spik G, Leclerc H (1993) Iron acquisition by Helicobacter pylori: importance of human lactoferrin. Infect Immun 61(6):2694–2697

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Worst DJ, Otto BR, de Graaff J (1995) Iron-repressible outer membrane proteins of Helicobacter pylori involved in heme uptake. Infect Immun 63(10):4161–4165

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dhaenens L, Szczebara F, Husson MO (1997) Identification, characterization, and immunogenicity of the lactoferrin-binding protein from Helicobacter pylori. Infect Immun 65(2):514–518

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Carrizo-Chávez MA, Cruz-Castañeda A, Olivares-Trejo Jde J (2012) The frpB1 gene of Helicobacter pylori is regulated by iron and encodes a membrane protein capable of binding haem and haemoglobin. FEBS Lett 586(6):875–879

    Article  PubMed  Google Scholar 

  32. Saleem M et al (2013) Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis. PLoS ONE 8(2)

    Google Scholar 

  33. Touati D (2000) Iron and oxidative stress in bacteria. Arch Biochem Biophys 373(1):1–6

    Article  CAS  PubMed  Google Scholar 

  34. Bijlsma JJ et al (2002) The Helicobacter pylori homologue of the ferric uptake regulator is involved in acid resistance. Infect Immun 70(2):606–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Vliet AH et al (2002) The role of the Ferric Uptake Regulator (Fur) in regulation of Helicobacter pylori iron uptake. Helicobacter 7(4):237–244

    Article  PubMed  Google Scholar 

  36. Fassbinder F et al (2000) Identification of iron-regulated genes of Helicobacter pylori by a modified fur titration assay (FURTA-Hp). FEMS Microbiol Lett 184(2):225–229

    Article  CAS  PubMed  Google Scholar 

  37. Pich OQ, Carpenter BM, Gilbreath JJ, Merrell DS (2012) Detailed analysis of Helicobacter pylori Fur-regulated promoters reveals a Fur box core sequence and novel Fur-regulated genes. Mol Microbiol 84(5):921–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dian C et al (2011) The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol Microbiol 79(5):1260–1275

    Article  CAS  PubMed  Google Scholar 

  39. Danielli A et al (2006) In vivo dissection of the Helicobacter pylori Fur regulatory circuit by genome-wide location analysis. J Bacteriol 188(13):4654–4662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Delany I, Spohn G, Rappuoli R, Scarlato V (2001) The Fur repressor controls transcription of iron‐activated and ‐repressed genes in Helicobacter pylori. Mol Microbiol 42(5):1297–1309

    Article  CAS  PubMed  Google Scholar 

  41. Delany I, Spohn G, Rappuoli R, Scarlato V (2003) An anti‐repression Fur operator upstream of the promoter is required for iron‐mediated transcriptional autoregulation in Helicobacter pylori. Mol Microbiol 50(4)

    Google Scholar 

  42. Frazier BA et al (1993) Paracrystalline inclusions of a novel ferritin containing nonheme iron, produced by the human gastric pathogen Helicobacter pylori: evidence for a third class of ferritins. J Bacteriol 175(4):966–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Doig P, Austin JW, Trust TJ (1993) The Helicobacter pylori 19.6-kilodalton protein is an iron-containing protein resembling ferritin. J Bacteriol 175(2):557–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cho K et al (2009) The crystal structure of Ferritin from Helicobacter pylori reveals unusual conformational changes for iron uptake. J Mol Biol 390(1):83–98

    Article  CAS  PubMed  Google Scholar 

  45. Bereswill S et al (1998) Structural, functional and mutational analysis of the pfr gene encoding a ferritin from Helicobacter pylori. Microbiology 144(Pt 9):2505–2516

    Article  CAS  PubMed  Google Scholar 

  46. Evans DJ et al (1995) Characterization of a Helicobacter pylori neutrophil-activating protein. Infect Immun 63(6):2213–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zanotti G et al (2002) Structure of the neutrophil-activating protein from Helicobacter pylori. J Mol Biol 323(1):125–130

    Article  CAS  PubMed  Google Scholar 

  48. Luther J et al (2010) Empiric quadruple vs. triple therapy for primary treatment of Helicobacter pylori infection: Systematic review and meta-analysis of efficacy and tolerability. Am J Gastroenterol 105(1):65–73

    Article  PubMed  Google Scholar 

  49. Wang Y et al (2015) Bio-coordination of bismuth in Helicobacter pylori revealed by immobilized metal affinity chromatography. Chem Commun 51(92):16479–16482

    Article  CAS  Google Scholar 

  50. Tsang C-N, Bianga J, Sun H, Szpunar J, Lobinski R (2012) Probing of bismuth antiulcer drug targets in H. pylori by laser ablation-inductively coupled plasma mass spectrometry. Metallomics 4(3):277–283

    Article  CAS  PubMed  Google Scholar 

  51. Posey JE (2000) Lack of a role for iron in the Lyme disease pathogen. Science 288(5471):1651–1653

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21501200) and a starting fund from Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xia, W. (2017). Competition for Iron Between Host and Pathogen: A Structural Case Study on Helicobacter pylori . In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 1535. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6673-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6673-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6671-4

  • Online ISBN: 978-1-4939-6673-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics