Skip to main content

Differential Radial Capillary Action of Ligand Assay (DRaCALA) for High-Throughput Detection of Protein–Metabolite Interactions in Bacteria

  • Protocol
  • First Online:
Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1535))

Abstract

Bacteria rely on numerous nucleotide second messengers for signal transduction such as cyclic AMP, cyclic-di-GMP, and cyclic-di-AMP. Although a number of receptors responsible for known regulated phenotypes have been established, the completeness of protein receptors in any given organism remains elusive. We have developed a method called differential radial capillary action of ligand assay (DRaCALA) that allows for an unbiased, systematic high-throughput screen for the detection of ligand binding proteins encoded by a genome. DRaCALA permits interrogation of ligand binding directly to an overexpressed protein in a cell lysate and bypasses the need of protein purification. Gateway-cloning-compatible open reading frame libraries are available for a diverse range of bacterial species and permits generation of the lysates overexpressing each open reading frame. These lysates can be assessed by DRaCALA in a 96-well format to allow rapid identification of protein–ligand interactions, including previously unknown proteins. Here, we present the protocols for generating the expression library, conducting the DRaCALA screen, data analysis, and hit validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325(6101):279–281

    Article  CAS  PubMed  Google Scholar 

  3. Tschowri N, Schumacher MA, Schlimpert S, Chinnam NB, Findlay KC, Brennan RG, Buttner MJ (2014) Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 158(5):1136–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fang X, Ahmad I, Blanka A, Schottkowski M, Cimdins A, Galperin MY, Römling U, Gomelsky M (2014) GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Mol Microbiol 93(3):439–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roelofs KG, Jones CJ, Helman SR, Shang X, Orr MW, Goodson JR, Galperin MY, Yildiz FH, Lee VT (2015) Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with Type II secretion systems. PLoS Pathog 11(10), e1005232

    Article  PubMed  PubMed Central  Google Scholar 

  6. An SQ, Caly DL, McCarthy Y, Murdoch SL, Ward J, Febrer M, Dow JM, Ryan RP (2014) Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence. PLoS Pathog 10(10), e1004429

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69(2):376–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baraquet C, Harwood CS (2013) Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Proc Natl Acad Sci U S A 110(46):18478–18483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leduc JL, Roberts GP (2009) Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J Bacteriol 191(22):7121–7122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chin KH, Lee YC, Tu ZL, Chen CH, Tseng YH, Yang JM, Ryan RP, McCarthy Y, Dow JM, Wang AH, Chou SH (2010) The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396(3):646–662

    Article  CAS  PubMed  Google Scholar 

  11. Tao F, He YW, Wu DH, Swarup S, Zhang LH (2010) The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol 192(4):1020–1029

    Article  CAS  PubMed  Google Scholar 

  12. Witte G, Hartung S, Buttner K, Hopfner KP (2008) Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 30(2):167–178

    Article  CAS  PubMed  Google Scholar 

  13. Davies BW, Bogard RW, Young TS, Mekalanos JJ (2012) Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149(2):358–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6

    Article  CAS  PubMed  Google Scholar 

  15. Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203(1):11–21

    Article  CAS  PubMed  Google Scholar 

  16. Chan C, Paul R, Samoray D, Amiot NC, Giese B, Jenal U, Schirmer T (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci U S A 101(49):17084–17089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmidt AJ, Ryjenkov DA, Gomelsky M (2005) The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187(14):4774–4781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7(4):263–273

    Article  CAS  PubMed  Google Scholar 

  19. Schirmer T, Jenal U (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7(10):724–735

    Article  CAS  PubMed  Google Scholar 

  20. Duvel J, Bertinetti D, Moller S, Schwede F, Morr M, Wissing J, Radamm L, Zimmermann B, Genieser HG, Jansch L, Herberg FW, Häussler S (2012) A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. J Microbiol Methods 88(2):229–236. doi:10.1016/j.mimet.2011.11.015

    Article  PubMed  Google Scholar 

  21. Nesper J, Reinders A, Glatter T, Schmidt A, Jenal U (2012) A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J Proteome 75(15):4874–4878

    Article  CAS  Google Scholar 

  22. Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65(6):1474–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roelofs KG, Wang J, Sintim HO, Lee VT (2011) Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc Natl Acad Sci U S A 108(37):15528–15533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Gründling A (2013) Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci U S A 110(22):9084–9089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orr MW, Donaldson GP, Severin GB, Wang J, Sintim HO, Waters CM, Lee VT (2015) Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci U S A 112(36):E5048–E5057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent T. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Orr, M.W., Lee, V.T. (2017). Differential Radial Capillary Action of Ligand Assay (DRaCALA) for High-Throughput Detection of Protein–Metabolite Interactions in Bacteria. In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 1535. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6673-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6673-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6671-4

  • Online ISBN: 978-1-4939-6673-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics