Skip to main content

Large-Scale Mitotic Cell Synchronization

  • Protocol
  • First Online:
Book cover Cell Cycle Synchronization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1524))

Abstract

Understanding cell growth and cell division involves the study of regulatory events that occur in a cell cycle phase-dependent manner. Studies analyzing cell cycle regulatory mechanisms and cell cycle progression invariably require synchronization of cell populations at specific cell cycle stages. Several methods have been established to synchronize cells, including serum deprivation, contact inhibition, centrifugal elutriation, and drug-dependent synchronization. Despite potential adverse cellular consequences of synchronizing cells by pharmacological agents, drug-dependent methods can be advantageous when studying later cell cycle events to ensure specific enrichment at selected mitotic stages. This chapter describes protocols used in our laboratory for isolating mitotic mammalian cells in a large-scale manner. In particular, we discuss the technical aspects of adherent or suspension cell isolation, the methods necessary to enrich cells at different mitotic stages and the optimized culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan DO (2007) The cell cycle: principles of control. New Science Press/Sinauer Associates, London/Sunderland, MA

    Google Scholar 

  2. Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11:427–439

    Article  CAS  PubMed  Google Scholar 

  4. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105:10762–10767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nousiainen M, Sillje HH, Sauer G, Nigg EA, Körner R (2006) Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A 103:5391–5396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Körner R, Greff Z, Kéri G, Stemmann O, Mann M (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31:438–448

    Article  CAS  PubMed  Google Scholar 

  7. Malik R, Lenobel R, Santamaria A, Ries A, Nigg EA, Körner R (2009) Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res 8:4553–4563

    Article  CAS  PubMed  Google Scholar 

  8. Dulla K, Daub H, Hornberger R, Nigg EA, Körner R (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9:1167–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, Morgan DO (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325:1682–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Santamaria A, Wang B, Elowe S, Malik R, Zhang F, Bauer M, Schmidt A, Silljé HH, Körner R, Nigg EA (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10:M110.004457

    Article  PubMed  Google Scholar 

  11. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3

    Article  PubMed  Google Scholar 

  12. Steen JA, Steen H, Georgi A, Parker K, Springer M, Kirchner M, Hamprecht F, Kirschner MW (2008) Different phosphorylation states of the anaphase promoting complex in response to antimitotic drugs: a quantitative proteomic analysis. Proc Natl Acad Sci U S A 105:6069–6074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Terasima T, Tolmach LJ (1963) Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp Cell Res 30:344–362

    Article  CAS  PubMed  Google Scholar 

  14. Banfalvi G (2008) Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nat Protoc 3:663–673

    Article  CAS  PubMed  Google Scholar 

  15. Zieve GW, Turnbull D, Mullins JM, McIntosh JR (1980) Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp Cell Res 126:397–405

    Article  CAS  PubMed  Google Scholar 

  16. Ikegami S, Taguchi T, Ohashi M, Oguro M, Nagano H, Mano Y (1978) Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-alpha. Nature 275:458–460

    Article  CAS  PubMed  Google Scholar 

  17. Reichard P, Ehrenberg A (1983) Ribonucleotide reductase—a radical enzyme. Science 221:514–519

    Article  CAS  PubMed  Google Scholar 

  18. Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H, Heimbrook DC, Chen L (2006) Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A 103:10660–10665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ye K, Ke Y, Keshava N, Shanks J, Kapp JA, Tekmal RR, Petros J, Joshi HC (1998) Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proc Natl Acad Sci U S A 95:1601–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are thankful to Erich A. Nigg and Roman Körner for their support and critical reading of the original initial version chapter, and Herman H. Silljé, Albert Ries, and Elena Nigg for technical help to optimize these protocols. We apologize for any omission in references. We also acknowledge funding when this chapter was originally written by the Biozentrum of the University of Basel, the Max Planck Society and by ENFIN, funded by the European Commission within its FP6 Program. AS is currently supported by the Miguel Servet Program (CP13/00158) from the Instituto Carlos III cofunded by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Santamaria Margalef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dulla, K., Margalef, A.S. (2017). Large-Scale Mitotic Cell Synchronization. In: Banfalvi, G. (eds) Cell Cycle Synchronization. Methods in Molecular Biology, vol 1524. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6603-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6603-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6602-8

  • Online ISBN: 978-1-4939-6603-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics