Skip to main content

Guidelines on Designing MicroRNA Sponges: From Construction to Stable Cell Line

  • Protocol
  • First Online:
MicroRNA Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1509))

Abstract

Single microRNA (miRNA) can be inhibited using antagomiR which efficiently knockdown a specific miRNA. However, the effect is transient and often results in subtle phenotype. Here we report a guideline on designing miRNA sponge inhibiting a miRNA family. As a model system, we targeted miR-30 family, known as tumor suppressor miRNAs in multiple tumors. To achieve an efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS. The protocol here demonstrates the miRNA sponge as a useful tool to examine the functional impact of inhibition miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132:9–14

    Article  CAS  PubMed  Google Scholar 

  2. Georges M, Coppieters W, Charlier C (2007) Polymorphic miRNA-mediated gene regulation: contribution to phenotypic variation and disease. Curr Opin Genet Dev 17:166–176

    Article  CAS  PubMed  Google Scholar 

  3. Rai D, Karanti S, Junk I, Dahia P, Aguiar RC (2008) Coordinated expression of microRNA-155 and predicted target genes in DLBCL. Cancer Genet Cytogenet 181:8–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chaubey A, Karanti S, Rai D, Oh T, Adhvaryu SG, Aguiar RC (2009) MicroRNAs and deletion of the derivative chromosome 9 in chronic myeloid leukemia. Leukemia 23:186–188

    Article  CAS  PubMed  Google Scholar 

  5. Jung I, Aguiar RC (2009) MicroRNA-155 expression and outcome in diffuse large B-cell lymphoma. Br J Haematol 144:138–140

    Article  PubMed  Google Scholar 

  6. Li C, Kim SW, Rai D, Bolla A, Kinney M, Robetorye R, Aguiar RC (2009) Copy number abnormalities, MYC activity and the fingerprint of normal B-cells define the microRNA profile of DLBCL. Blood 113:6681–6690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rai D, Kim SW, McKeller MR, Dahia PLM, Aguiar RC (2010) Targeting of SMAD5 links microRNA-155 to the TGFβ pathway and lymphomagenesis. Proc Natl Acad Sci U S A 107:3111–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim SW, Ramasamy K, Bouamar H, Lin AP, Jiang D, Aguiar RC (2012) MicroRNAs miR-125a and miR-125b constitutively activate the NF-kB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci USA 109:7865–7870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang D, Aguiar RC (2014) MicroRNA-155 controls RB phosphorylation in normal and malignant B lymphocytes via the non-canonical TGFB1-SMAD5 signaling module. Blood 123:86–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ortega M, Bhatnagar H, Lin AP, Wang L, Aster JC, Sill H, Aguiar RC (2015) A microRNA-mediated regulatory loop modulates NOTCH and MYC oncogenic signals in B- and T-cell malignancies. Leukemia 29:968–976

    Article  CAS  PubMed  Google Scholar 

  11. Jeong D, Kim J, Nam J, Sun H, Lee YH, Lee TJ, Aguiar RC, Kim SW (2015) MicroRNA-124 links p53 to the NF-kB pathway in B cell lymphomas. Leukemia 29:1868–1874

    Article  CAS  PubMed  Google Scholar 

  12. Bouamar H, Jiang D, Wang L, Lin AP, Ortega M, Aguiar RC (2015) MicroRNA-155 control of p53 activity is context dependent and mediated by Aicda and Socs1. Mol Cell Biol 35:1329–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  CAS  PubMed  Google Scholar 

  14. Piva R, Spandidos DA, Gambari R (2013) From microRNA functions to microRNA therapeutics: novel targets and novel drugs in breast cancer research and treatment (Review). Int J Oncol 43:985–994

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Esau CC (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44:55–60

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi M, Yamada N, Hatakeyama H, Murata M, Sato Y, Minakawa N, Harashima H, Matsuda A (2013) In vitro optimization of 2′-OMe-4′-thioribonucleoside-modified anti-microRNA oligonucleotides and its targeting delivery to mouse liver using a liposomal nanoparticle. Nucleic Acids Res 41:10659–10667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lennox KA, Owczarzy R, Thomas DM, Walder JA, Behlke MA (2013) Improved performance of anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol Ther Nucleic Acids 2:e117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu SQ, Xu ZZ, Lin J, Zhan R (2012) Construction of miRNA sponge targeting miR-20a and stable expression in Jurkat leukemia cell line. J Exp Hematol 20:1056–1062

    CAS  Google Scholar 

  19. Chen L, Zhang K, Shi Z, Zhang A, Jia Z, Wang G, Pu P, Kang C, Han L (2014) A lentivirus-mediated miR-23b sponge diminishes the malignant phenotype of glioma cells in vitro and in vivo. Oncol Rep 31:1573–1580

    PubMed  Google Scholar 

  20. Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, Halsema N, Kroesen BJ, van den Berg A (2012) Generation of miRNA sponge constructs. Methods 58:113–117

    Article  CAS  PubMed  Google Scholar 

  21. Simcox TG, Fabian L, Kretz K, Hedden V, Simcox ME (1995) SanDI, a new type-II restriction endonuclease that recognizes 5′-GG/GWCCC-3′. Gene 155:129–130

    Article  CAS  PubMed  Google Scholar 

  22. Jung J, Yeom C, Choi YS, Kim S, Lee E, Park MJ, Kang SW, Kim SB, Chang S (2015) Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge. Oncotarget 6:20370–20387

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank Dr. Ricardo CT Aguiar from The University of Texas Health Science Center at San Antonio, USA, for the valuable advices during the sponge constructions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoela Marques Ortega Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ortega, M.M., Bouamar, H. (2017). Guidelines on Designing MicroRNA Sponges: From Construction to Stable Cell Line. In: Rani, S. (eds) MicroRNA Profiling. Methods in Molecular Biology, vol 1509. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6524-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6524-3_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6522-9

  • Online ISBN: 978-1-4939-6524-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics