Skip to main content

Cell-Based Assays to Study ERK Pathway/Caveolin1 Interactions

  • Protocol
  • First Online:
Book cover ERK Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

  • 3103 Accesses

Abstract

Caveolin1, the main component of caveolae, plays a major role in regulating cell motility, gene expression, and cytoskeleton remodeling downstream of many membrane receptors. Here, we summarize different techniques set up to study changes in cell morphology and cell motility regulated by ERK/caveolin1 interactions during induction of epithelial mesenchymal transition (EMT) in mesothelial cells (MCs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112

    Article  CAS  PubMed  Google Scholar 

  2. Anderson RG (1993) Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci U S A 90:10909–10913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galbiati F, Volonte D, Engelman JA et al (1998) Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17:6633–6648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang XM, Zhang Y, Kim HP et al (2006) Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med 203:2895–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Strippoli R, Loureiro J, Moreno V et al (2015) Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Mol Med 7:102–123

    Article  CAS  Google Scholar 

  6. Woodman SE, Park DS, Cohen AW et al (2002) Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 277:38988–38997

    Article  CAS  PubMed  Google Scholar 

  7. Tourkina E, Richard M, Gooz P et al (2008) Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 294:L843–L861

    Article  CAS  PubMed  Google Scholar 

  8. Engelman JA, Chu C, Lin A et al (1998) Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett 428:205–211

    Article  CAS  PubMed  Google Scholar 

  9. Collins BM, Davis MJ, Hancock JF et al (2012) Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Dev Cell 23:11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ariotti N, Fernandez-Rojo MA, Zhou Y et al (2014) Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. J Cell Biol 204: 777–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Strippoli R, Benedicto I, Perez Lozano ML et al (2008) Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/Snail1 pathway. Dis Model Mech 1:264–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zavadil J, Bitzer M, Liang D et al (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci U S A 98:6686–6691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Q, Mattingly RR (2008) Restoration of E-cadherin cell-cell junctions requires both expression of E-cadherin and suppression of ERK MAP kinase activation in Ras-transformed breast epithelial cells. Neoplasia 10:1444–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grotegut S, von Schweinitz D, Christofori G et al (2006) Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 25:3534–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lopez-Cabrera M (2014) Mesenchymal conversion of mesothelial cells is a key event in the pathophysiology of the peritoneum during peritoneal dialysis. Adv Med 2014:473134

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mutsaers SE, Birnie K, Lansley S et al (2015) Mesothelial cells in tissue repair and fibrosis. Front Pharmacol 6:113

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yanez-Mo M, Lara-Pezzi E, Selgas R et al (2003) Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 348:403–413

    Article  PubMed  Google Scholar 

  19. Vargha R, Endemann M, Kratochwill K et al (2006) Ex vivo reversal of in vivo transdifferentiation in mesothelial cells grown from peritoneal dialysate effluents. Nephrol Dial Transplant 21:2943–2947

    Article  CAS  PubMed  Google Scholar 

  20. Li YC, Wang JH, Asahina K (2013) Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury. Proc Natl Acad Sci U S A 110:2324–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tee MM, Tesch GH, Nikolic-Paterson DJ et al (2007) Human peritoneal mesothelial cells isolated from spent dialysate fluid maintain contaminating macrophages via production of macrophage colony stimulating factor. Nephrology (Carlton) 12:160–165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the MINECO (Spanish Ministry of Economy and Competitiveness) to M.A.D.P. (SAF2014-51876-R and CONSOLIDER CSD2009-00016) and from Fundació la Marató TV3 (674/C/2013) to M.A.D.P. The CNIC is supported by MINECO and the Pro-CNIC Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raffaele Strippoli or Miguel Angel del Pozo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Strippoli, R., Echarri, A., del Pozo, M.A. (2017). Cell-Based Assays to Study ERK Pathway/Caveolin1 Interactions. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics