Skip to main content

Visualization of Enhancer-Derived Noncoding RNA

  • Protocol
  • First Online:
Enhancer RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1468))

Abstract

Enhancers are principal regulators that allow spatiotemporal tissue-specific control of gene expression. While mounting evidence suggests that enhancer-derived long noncoding RNAs (long ncRNAs), including enhancer RNAs (eRNAs), are an important component of enhancer function, their expression has not been broadly analyzed at a single cell level via imaging techniques. This protocol describes a method to image eRNA in single cells by in situ hybridization followed by tyramide signal amplification (TSA). The procedure can be multiplexed to simultaneously visualize both eRNA and protein-coding transcript at the site of transcriptional elongation, thereby permitting analysis of dynamics between the two transcript species in single cells. Our approach is not limited to eRNAs, but can be implemented on other transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banerji J, Rusconi S, Schaffner W (1981) Expression of beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27:299–308

    Article  CAS  PubMed  Google Scholar 

  2. Levine M, Cattoglio C, Tjian R (2014) Looping back to leap forward: transcription enters a new era. Cell 157:13–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Collins P, Antoniou M, Grosveld F (1990) Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. EMBO J 9:233–240

    Google Scholar 

  4. Tuan D, Kong S, Hu K (1992) Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc Natl Acad Sci U S A 89:11219–11223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim TK, Hemberg M, Gray JM et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507:455–461

    Article  CAS  PubMed  Google Scholar 

  7. Li W, Notani D, Ma Q et al (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498:516–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lam MTY, Cho H, Lesch HP et al (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Melo CA, Drost J, Wijchers PJ (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49:524–535

    Article  CAS  PubMed  Google Scholar 

  10. Mousavi K, Zare H, Dell’orso S et al (2013) eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 51:606–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parker SC, Stitzel ML, Taylor DL et al (2013) Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Natl Acad Sci U S A 110:17921–17926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Whyte WA, Orlando DA, Hnisz D et al (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hah N, Benner C, Chong LW et al (2015) Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs. Proc Natl Acad Sci U S A 112:E297–E302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raj A, van den Bogaard P, Rifkin SA et al (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Batish M, Raj A, Tyagi S (2011) Single molecule imaging of RNA in situ. In: Gerst JE (ed) RNA detection and visualization: methods and protocols, vol 714, Methods in molecular biology. Springer, Heidelberg, pp 3–13

    Chapter  Google Scholar 

  16. Bobrow MN, Harris TD, Krista H et al (1989) Catalyzed reporter deposition, a novel method of signal amplification application to immunoassays. J Immunol Methods 125:279–285

    Article  CAS  PubMed  Google Scholar 

  17. van Gijlswijk RPM, Zijlmans HJMAA, Wiegant J et al (1997) Fluorochrome-labeled tyramides: use in immunocytochemistry and fluorescence in situ hybridization. J Histochem Cytochem 45:375–382

    Article  PubMed  Google Scholar 

  18. Wang KC, Yang YW, Liu B et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Levesque MJ, Raj A (2013) Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation. Nat Methods 10:246–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fanucchi S, Shibayama Y, Burd S et al (2013) Chromosomal contact permits transcription between coregulated genes. Cell 155:606–620

    Article  CAS  PubMed  Google Scholar 

  21. Yildiz A, Forkey JN, McKinney SA et al (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge contributions from Robyn Brackin who helped develop the TSA technique in our lab. This work was supported by grant PG-V2KYPO7 from the Council for Industrial and Scientific Research (CSIR, South Africa) and by a grant from the Emerging Research Area Program of The Department of Science and Technology (DST, South Africa) and grant PTDC/SAU-GMG/115652/2009 from the Fundação para a Ciência e a Tecnologia (FCT, Portugal), all to Musa M. Mhlanga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musa M. Mhlanga Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shibayama, Y., Fanucchi, S., Mhlanga, M.M. (2017). Visualization of Enhancer-Derived Noncoding RNA. In: Ørom, U. (eds) Enhancer RNAs. Methods in Molecular Biology, vol 1468. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4035-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4035-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4033-2

  • Online ISBN: 978-1-4939-4035-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics