Skip to main content

In Silico Prediction of Chemically Induced Mutagenicity: How to Use QSAR Models and Interpret Their Results

  • Protocol
  • First Online:
Book cover In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1425))

Abstract

Information on genotoxicity is an essential piece of information gathering for a comprehensive toxicological characterization of chemicals. Several QSAR models that can predict Ames genotoxicity are freely available for download from the Internet and they can provide relevant information for the toxicological profiling of chemicals. Indeed, they can be straightforwardly used for predicting the presence or absence of genotoxic hazards associated with the interactions of chemicals with DNA.

Nevertheless, and despite the ease of use of these models, the scientific challenge is to assess the reliability of information that can be obtained from these tools. This chapter provides instructions on how to use freely available QSAR models and on how to interpret their predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore MM, Myers MB, Heflich RH (2000) Mutagenesis and genetic toxicology. In: Williams PL, James RC, Roberts SM (eds) Principles of toxicology: environmental and industrial applications, 2nd edn. Wiley-Interscience, New York, pp 239–264

    Google Scholar 

  2. Sutter A, Amberg A, Boyer S et al (2013) Use of in silico systems and expert knowledge for structure-based assessment of potential mutagenic impurities. Regul Toxicol Pharmacol 67:39–52

    Article  CAS  PubMed  Google Scholar 

  3. Regulation (EC) No. 1907/2006 of the European Parliament and of the Council, of December 18, 2006 concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission

    Google Scholar 

  4. Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutat Res 31:347–364

    Article  CAS  PubMed  Google Scholar 

  5. Claxton LD, Umbuzeiro GA, DeMarini DM (2010) The Salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environ Health Perspect 118:1515–1522

    Article  PubMed  PubMed Central  Google Scholar 

  6. Benigni R, Bossa C, Battistelli CL et al (2013) IARC classes 1 and 2 carcinogens are successfully identified by an alternative strategy that detects DNA-reactivity and cell transformation ability of chemicals. Mutat Res 758:56–61

    Article  CAS  PubMed  Google Scholar 

  7. OECD (1997) Test No. 471: bacterial reverse mutation test, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris

    Book  Google Scholar 

  8. Piegorsch W, Zeiger E (1991) Measuring intra-assay agreement for the Ames Salmonella assay. In: Hotorn L (ed) Statistical methods in toxicology, lecture notes in medical informatics, vol 43. Springer-Verlag, Berlin, pp 35–41

    Google Scholar 

  9. Sushko I, Novotarskyi S, Körner R et al (2010) Applicability domains for classification problems: benchmarking of distance to models for Ames mutagenicity set. J Chem Inf Model 50:2094–2111

    Article  CAS  PubMed  Google Scholar 

  10. Miller JA, Miller EC (1977) Ultimate carcinogens as reactive mutagenic electrophiles. In: Hiatt HH, Watson JD, Winston JA (eds) Origins of human cancer, mechanisms of carcinogenesis, Book B. Cold Spring Harbor Laboratory, New York, pp 605–627

    Google Scholar 

  11. Cooper JA, Saracci R, Cole P (1979) Describing the validity of carcinogen screening tests. Br J Cancer 39:87–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Virtual models for evaluating the properties of chemicals within a global architecture. http://www.vega-qsar.eu/download.html. Accessed 19 Jun 2015

  13. SMILES, Simplified Molecular Input Line Entry System. http://www.daylight.com/smiles/index.html. Accessed 19 Jun 2015

  14. Drug Design Laboratory. http://nova.disfarm.unimi.it/cms/index.php?Software_projects. Accessed 19 Jun 2015

  15. ACD/ChemSketch for Academic and Personal Use. http://www.acdlabs.com/resources/freeware/chemsketch/. Accessed 19 Jun 2015

  16. Marvin, intuitive applications and API for chemical sketching, visualization and data exploration. http://www.chemaxon.com/products/marvin/. Accessed 19 Jun 2015

  17. The OECD QSAR Toolbox. http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm. Accessed 19 Jun 2015

  18. Mombelli E, Devillers J (2010) Evaluation of the OECD (Q)SAR Application Toolbox and Toxtree for predicting and profiling the carcinogenic potential of chemicals. SAR QSAR Environ Res 21:731–752

    Article  CAS  PubMed  Google Scholar 

  19. Benfenati E, Pardoe S, Martin T (2013) Using toxicological evidence from QSAR models in practice. ALTEX 30:19–40

    Article  PubMed  Google Scholar 

  20. Bakhtyari NG, Raitano G, Benfenati E et al (2013) Comparison of in silico models for prediction of mutagenicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 31:45–66

    Article  CAS  PubMed  Google Scholar 

  21. Benigni R, Bossa C, Jeliazkova N et al (2008) Benigni/Bossa rulebase for mutagenicity and carcinogenicity—a module of toxtree. JRC scientific and technical reports. https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/doc/EUR_23241_EN.pdf. Accessed 19 Jun 2015

  22. Istituto Superiore di Sanità. “Chemical carcinogens structures and experimental data” (ISSCAN). http://www.epa.gov/ncct/dsstox/sdf_isscan_external.html. Accessed 19 Jun 2015

  23. Ferrari T, Gini G (2010) An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts. Chem Cent J 4:S2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kazius J, McGuire R, Bursi R (2005) Derivation and validation of toxicophores for mutagenicity prediction. J Med Chem 48:312–330

    Article  CAS  PubMed  Google Scholar 

  25. Ferrari T, Cattaneo D, Gini G et al (2013) Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction. SAR QSAR Environ Res 24:365–383

    Article  CAS  PubMed  Google Scholar 

  26. Hansen K, Mika S, Schroeter T et al (2009) Benchmark data set for in silico predictions of Ames mutagenicity. J Chem Inf Model 49:2077–2081

    Article  CAS  PubMed  Google Scholar 

  27. Byeon WH, Hyun HH, Lee SY (1976) Mutagenicity of nitro furan nitroimidazol and nitrothiazole derivatives on salmonella microsome system. Kor J Microbiol 14:151–158

    CAS  Google Scholar 

  28. Singh H, Singh JR, Dhillon VS et al (1994) In vitro and in vivo genotoxicity evaluation of hormonal drugs II. Dexamethasone. Mutat Res 308:89–97

    Article  CAS  PubMed  Google Scholar 

  29. Simulations Plus, Inc. http://www.simulations-plus.com. Accessed 19 Jun 2015

  30. Quantitative structure activity relationship, Toxicity Estimation Software Tool (TEST). http://www.epa.gov/nrmrl/std/qsar/qsar.html. Accessed 19 Jun 2015

  31. Toxtree—toxic hazard estimation by decision tree approach. http://toxtree.sourceforge.net. Accessed 19 Jun 2015

Download references

Acknowledgements

We acknowledge the LIFE + CALEIDOS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Mombelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mombelli, E., Raitano, G., Benfenati, E. (2016). In Silico Prediction of Chemically Induced Mutagenicity: How to Use QSAR Models and Interpret Their Results. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 1425. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3609-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3609-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3607-6

  • Online ISBN: 978-1-4939-3609-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics