Skip to main content

RNA-Seq Analysis to Measure the Expression of SINE Retroelements

  • Protocol
  • First Online:
Transposons and Retrotransposons

Abstract

The intrinsic features of retroelements, like their repetitive nature and disseminated presence in their host genomes, demand the use of advanced methodologies for their bioinformatic and functional study. The short length of SINE (short interspersed elements) retrotransposons makes such analyses even more complex. Next-generation sequencing (NGS) technologies are currently one of the most widely used tools to characterize the whole repertoire of gene expression in a specific tissue. In this chapter, we will review the molecular and computational methods needed to perform NGS analyses on SINE elements. We will also describe new methods of potential interest for researchers studying repetitive elements. We intend to outline the general ideas behind the computational analyses of NGS data obtained from SINE elements, and to stimulate other scientists to expand our current knowledge on SINE biology using RNA-seq and other NGS tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12:1455–1465

    Article  CAS  PubMed  Google Scholar 

  2. Bennett EA, Keller H, Mills RE et al (2008) Active Alu retrotransposons in the human genome. Genome Res 18:1875–1883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Roman AC, Benitez DA, Carvajal-Gonzalez JM et al (2008) Genome-wide B1 retrotransposon binds the transcription factors dioxin receptor and Slug and regulates gene expression in vivo. Proc Natl Acad Sci U S A 105:1632–1637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wang T, Zeng J, Lowe CB et al (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci U S A 104:18613–18618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Borchert GM, Holton NW, Williams JD et al (2011) Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob Genet Elements 1:8–17

    Article  PubMed Central  PubMed  Google Scholar 

  6. Gu TJ, Yi X, Zhao XW et al (2009) Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics 10:563

    Article  PubMed Central  PubMed  Google Scholar 

  7. Cowley M, Oakey RJ (2013) Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet 9, e1003234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Jacques PE, Jeyakani J, Bourque G (2013) The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet 9, e1003504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Singer MF (1982) SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28:433–434

    Article  CAS  PubMed  Google Scholar 

  10. Weiner AM (1980) An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome. Cell 22:209–218

    Article  CAS  PubMed  Google Scholar 

  11. Deininger PL, Jolly DJ, Rubin CM et al (1981) Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol 151:17–33

    Article  CAS  PubMed  Google Scholar 

  12. Rubin CM, Houck CM, Deininger PL et al (1980) Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature 284:372–374

    Article  CAS  PubMed  Google Scholar 

  13. Kramerov DA, Grigoryan AA, Ryskov AP et al (1979) Long double-stranded sequences (dsRNA-B) of nuclear pre-mRNA consist of a few highly abundant classes of sequences: evidence from DNA cloning experiments. Nucleic Acids Res 6:697–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Okada N (1991) SINEs. Curr Opin Genet Dev 1:498–504

    Article  CAS  PubMed  Google Scholar 

  15. Geiduschek EP, Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310:1–26

    Article  CAS  PubMed  Google Scholar 

  16. Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94:1872–1877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    Article  CAS  PubMed  Google Scholar 

  18. Adeniyi-Jones S, Zasloff M (1985) Transcription, processing and nuclear transport of a B1 Alu RNA species complementary to an intron of the murine alpha-fetoprotein gene. Nature 317:81–84

    Article  CAS  PubMed  Google Scholar 

  19. Ichiyanagi K, Li Y, Watanabe T et al (2011) Locus- and domain-dependent control of DNA methylation at mouse B1 retrotransposons during male germ cell development. Genome Res 21:2058–2066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Watanabe T, Totoki Y, Toyoda A et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    Article  CAS  PubMed  Google Scholar 

  21. Kim W, Benhamed M, Servet C et al (2009) Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res 19:899–909

    Article  CAS  PubMed  Google Scholar 

  22. Kaneko H, Dridi S, Tarallo V et al (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471:325–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  PubMed Central  PubMed  Google Scholar 

  24. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10:71–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  27. Maraia RJ, Driscoll CT, Bilyeu T et al (1993) Multiple dispersed loci produce small cytoplasmic Alu RNA. Mol Cell Biol 13:4233–4241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Carlos Román Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Román, Á.C., Morales-Hernández, A., Fernández-Salguero, P.M. (2016). RNA-Seq Analysis to Measure the Expression of SINE Retroelements. In: Garcia-Pérez, J. (eds) Transposons and Retrotransposons. Methods in Molecular Biology, vol 1400. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3372-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3372-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3370-9

  • Online ISBN: 978-1-4939-3372-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics