Skip to main content

Minicircle: Next Generation DNA Vectors for Vaccination

  • Protocol
Gene Therapy of Solid Cancers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1317))

Abstract

The use of DNA vaccines requires pharmaceutical grade DNA that causes the immunization on the basis of a nucleic acid sequence that encodes the protein to be vaccinated against. This nucleic acid sequence can be a circular or linear plasmid, preferably a double stranded one and should not contain any other and especially not any “toxic” sequences. Sequences that are not desirable to be part of the DNA drug can be those deriving from the (typically) bacterial amplification system to produce the DNA vaccine. These could be those portions of a plasmid that are only used for controlling the bacterial replication of the plasmid or those used to select for the plasmid during cloning or even worse during production. After initial approaches to avoid the presence of these sequences in DNA vaccine plasmids with “mini-plasmids,” a significant improvement in product safety was obtained by use of minicircles—circular and ccc-supercoiled expression cassettes of the DNA vaccine. Initial results proofed their extremely high expression level and recent comparison of DNA vaccines based on either plasmid or minicircle DNA show successful vaccination against HBV in mice, as shown in this overview chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schakowski F, Gorschlüter M, Junghans C et al (2001) A novel minimal-size vector (MIDGE) improves transgene expression in colon carcinoma cells and avoids transfection of undesired DNA. Mol Ther 3:793–800

    Article  CAS  PubMed  Google Scholar 

  2. Maucksch C, Bohla A, Hoffmann F, Schleef M et al (2009) Transgene expression of transfected supercoiled plasmid DNA concatemers in mammalian cells. J Gene Med 11:444–453

    Article  CAS  PubMed  Google Scholar 

  3. Schleef M, Blaesen M, Schmeer M et al (2010) Production on non viral DNA vectors. Curr Gene Ther 10:487–507

    Article  CAS  PubMed  Google Scholar 

  4. Schleef M (ed) (2013) Minicircle and miniplasmid DNA vectors—the future of non-viral and viral gene transfer. Wiley-Blackwell, Weinheim

    Google Scholar 

  5. Barron LG, Gagne L, Szoka FC (1999) Lipoplex-mediated gene delivery to the lung occurs within 60 minutes of intravenous administration. Hum Gene Ther 10:1683–1694

    Article  CAS  PubMed  Google Scholar 

  6. Koltover I, Salditt T, Rädler JO et al (1998) An inverted hexagonal phase of cationic liposome-DNA complexes related to dna release and delivery. Science 281:78–81

    Article  CAS  PubMed  Google Scholar 

  7. Schmeer M, Seipp T, Pliquett U et al (2004) Mechanism for the conductivity changes caused by membrane electroporation of CHO cell-pellets. Phys Chem Chem Phys 6:5564–5574

    Article  CAS  Google Scholar 

  8. Miklavcic D, Semrov D, Mekid H et al (2000) A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta 1523:73–83

    Article  CAS  PubMed  Google Scholar 

  9. Schmeer M (2009) Electroporative gene transfer. In: Walther W, Stein US (eds) Methods in molecular biology, gene therapy of cancer. Humana, Totowa, NJ, pp 157–165

    Google Scholar 

  10. Trollet C, Bloquel C, Scherman D et al (2006) Electrotransfer into skeletal muscle for protein expression. Curr Gene Ther 5:561–578

    Article  Google Scholar 

  11. Mir LM, Bureau MF, Gehl J et al (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci U S A 96:4262–4267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bureau MF, Gehl J, Deleuze V et al (2002) Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim Biophys Acta 1474:353–359

    Article  Google Scholar 

  13. Favard C, Dean DS, Rols MP (2007) Electrotransfer as a non viral method of gene delivery. Curr Gene Ther 7:67–77

    Article  CAS  PubMed  Google Scholar 

  14. Andrianaivo F, Lecocq M, Wattiaux-De Coninck S et al (2004) Hydrodynamics-based transfection of the liver: entrance into hepatocytes of DNA that causes expression takes place very early after injection. J Gene Med 6:877–883

    Article  CAS  PubMed  Google Scholar 

  15. Yang Y, Li Q, Ertl HC et al (1995) Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 69:2004–2015

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Ziady AG, Davis PB, Konstan MW (2003) Non-viral gene transfer therapy for cystic fibrosis. Expert Opin Biol Ther 3:449–458

    Article  CAS  PubMed  Google Scholar 

  17. Davies LA, Hyde SC, Gill DR (2005) Plasmid inhalation: delivery to the airways. In: Schleef M (ed) DNA pharmaceuticals—formulation and delivery in gene therapy, DNA vaccination and immunotherapy. Wiley-VCH, Weinheim, pp 145–164

    Google Scholar 

  18. Newman CMH, Bettinger T (2007) Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 14:465–475

    Article  CAS  PubMed  Google Scholar 

  19. Li YS, Davidson E, Reid CN et al (2008) Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: potential applications for gene therapy of cancer. Cancer Lett 273:156–162

    Article  Google Scholar 

  20. Zeira E, Manevitch A, Khatchatouriants A et al (2003) Femtosecond infrared laser—an efficient and safe in vivo gene delivery system for prolonged expression. Mol Ther 8:342–350

    Article  CAS  PubMed  Google Scholar 

  21. Fuller DH, Loudon P, Schmaljohn C (2006) Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods 40:86–97

    Article  CAS  PubMed  Google Scholar 

  22. Steele KE, Stabler K, VanderZanden L et al (2001) DNA vaccination against Ebola virus by particle bombardment: histopathology and alteration of CD3-positive dendritic epidermal cells. Vet Pathol 38:203–215

    Article  CAS  PubMed  Google Scholar 

  23. Wolff JA, Malone RW, Williams P et al (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  CAS  PubMed  Google Scholar 

  24. Wolff JA, Williams P, Acsadi G et al (1991) Conditions affecting direct gene transfer into rodent muscle in vivo. Biotechniques 11:474–485

    CAS  PubMed  Google Scholar 

  25. Furth PA, Kerr D, Wall R (1995) Gene transfer by jet injection into differentiated tissues of living animals and in organ culture. Mol Biotechnol 4:121–127

    Article  CAS  PubMed  Google Scholar 

  26. Furth PA, Shamay A, Hennighausen L (1995) Gene transfer into mammalian cells by jet injection. Hybridoma 14:149–152

    Article  CAS  PubMed  Google Scholar 

  27. Liu F, Song YK, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266

    Article  CAS  PubMed  Google Scholar 

  28. Zhang G, Song YK, Liu D (2000) Long-term expression of human alpha1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using hydrodynamics-based procedure. Gene Ther 7:1344–1349

    Article  CAS  PubMed  Google Scholar 

  29. Cartier R, Ren SV, Walther W et al (2000) In vivo gene transfer by low volume jet injection. Anal Biochem 282:262–265

    Article  CAS  PubMed  Google Scholar 

  30. Walther W, Stein U, Fichtner I et al (2001) Non-viral in vivo gene delivery into tumors using a novel low volume jet-injection technology. Gene Ther 8:173–180

    Article  CAS  PubMed  Google Scholar 

  31. Scherer F, Anton M, Schillinger U et al (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109

    Article  CAS  PubMed  Google Scholar 

  32. Huettinger C, Hirschberger J, Jahnke A et al (2008) Neoadjuvant gene delivery of feline granulocyte-macrophage colony-stimulating factor using magnetofection for the treatment of feline fibrosarcomas: a phase I trial. J Gene Med 10:655–667

    Article  CAS  Google Scholar 

  33. Jahnke A, Hirschberger J, Fischer C et al (2007) Intra-tumoral gene delivery of feIL-2, feIFN-gamma and feGM-CSF using magnetofection as a neoadjuvant treatment option for feline fibrosarcomas: a phase-I study. J Vet Med A Physiol Pathol Clin Med 10:599–606

    Article  Google Scholar 

  34. Sapet C, Laurent N, de Chevigny A et al (2011) High transfection efficiency of neural stem cells with magnetofection. Biotechniques 50:187–189

    CAS  PubMed  Google Scholar 

  35. Seed B (1983) Purification of genomic sequences from bacteriophage libraries by recombination and selection in vivo. Nucleic Acids Res 11:2427–2445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Corinne M, Quiviger M, Foster H et al (2013) Plasmid-based medicinal products—focus on pFAR: a miniplasmid free of antibiotic resistance markers. In: Schleef M (ed) Minicircle and miniplasmid DNA vectors—the future of non-viral and viral gene transfer. Weinheim, Wiley-Blackwell, pp 37–53

    Google Scholar 

  37. Schirmbeck R, König-Merediz SA, Riedl P et al (2001) J Mol Med 79:343–350

    Article  CAS  PubMed  Google Scholar 

  38. Cranenburgh RM, Hanak JA, Williams SG et al (2001) Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res 29:2120–2124

    Article  Google Scholar 

  39. Mairhofer J, Pfaffenzeller I, Merz D et al (2008) A novel antibiotic free plasmid selection system: advances in safe and efficient DNA therapy. Biotechnol J 3:83–89

    Article  CAS  PubMed  Google Scholar 

  40. Mairhofer J, Cserjan-Puschmann M, Striedner G et al (2010) Marker-free plasmids for gene therapeutic applications—lack of antibiotic resistance gene substantially improves the manufacturing process. J Biotechnol 146:130–137

    Article  CAS  PubMed  Google Scholar 

  41. Selvamani RSV, Telaar M, Friehs K, Flaschel E (2014) Antibiotic-free segregational plasmid stabilization in Escherichia coli owing to the knockout of triosephosphate isomerase (tpiA). Microb Cell Fact 13:58

    Article  Google Scholar 

  42. Cameron B, Crouzet J, Darquet AM et al (1996) DNA molecules, preparation thereof and use thereof in gene therapy. WO 96/26270

    Google Scholar 

  43. Darquet AM, Cameron B, Wils P et al (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther 4:1341–1349

    Article  CAS  PubMed  Google Scholar 

  44. Kreiss P, Cameron B, Darquet AM et al (1998) Production of a new DNA vehicle for gene transfer using site-specific recombination. Appl Microbiol Biotechnol 49:560–567

    Article  CAS  PubMed  Google Scholar 

  45. Kreiss P, Cameron B, Rangara R et al (1999) Plasmid DNA size does not affect the physiological properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res 27:3792–3798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Bigger BW, Tolmachov O, Collomber JM et al (2001) An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 276:23018–23027

    Article  CAS  PubMed  Google Scholar 

  47. Crouzet J, Scherman D, Cameron B et al (2000) Circular DNA expression cassettes for in vitro gene transfer. US 6,143,530

    Google Scholar 

  48. Chen ZY, He CY, Ehrhardt A et al (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8:495–500

    Article  CAS  PubMed  Google Scholar 

  49. Jechlinger W, Azimpour Tabrizi T, Lubitz W et al (2004) Minicircle DNA immobilized in bacterial ghosts: in vivo production of safe non-viral DNA delivery vehicles. J Mol Microbiol Biotechnol 8:222–231

    Article  PubMed  Google Scholar 

  50. Nehlsen K, Broll S, Bode J (2006) Replicating minicircles: generation of nonviral episomes for the efficient modification of dividing cells. Gene Ther Mol Biol 10:233–244

    Google Scholar 

  51. Gossen JA, de Leeuw WJF, Molijn AC et al (1993) Plasmid rescue from transgenic mouse DNA using lacI repressor protein conjugated to magnetic beads. Biotechniques 14:624–629

    Google Scholar 

  52. Mayrhofer P, Blaesen M, Schleef M et al (2008) Minicircle-DNA production by site specific recombination and protein-DNA interaction chromatography. J Gene Med 10:1253–1269

    Article  CAS  PubMed  Google Scholar 

  53. Schleef M, Schmeer M (2011) Minicircle—Die nächste Generation nicht-viraler Gentherapie-Vektoren. Parm unserer Zeit 3:220–224

    Article  Google Scholar 

  54. Haddad D, Liljeqvist S, Ståhl S et al (1997) Comparative study of DNA-based immunization vectors: effect of secretion signals on the antibody responses in mice. FEMS Immunol Med Microbiol 18:193–202

    Article  CAS  PubMed  Google Scholar 

  55. Kuhöber A, Pudollek HP, Reifenberg K et al (1996) DNA immunization induces antibody and cytotoxic T cell responses to hepatitis B core antigen in H-2b mice. J Immunol 156:3687–3695

    PubMed  Google Scholar 

  56. Svanholm C, Bandholtz L, Lobell A et al (1999) Enhancement of antibody responses by DNA immunization using expression vectors mediating efficient antigen secretion. J Immunol Methods 228:121–130

    Article  CAS  PubMed  Google Scholar 

  57. Cresswell P, Ackerman AL, Giodini A et al (2005) Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev 207:145–157

    Article  CAS  PubMed  Google Scholar 

  58. Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18:927–974

    Article  CAS  PubMed  Google Scholar 

  59. Michel ML, Davis HL, Schleef M et al (1995) DNA-mediated immunization to the hepatitis B surface antigen in mice: aspects of the humoral response mimic hepatitis B viral infection in humans. Proc Natl Acad Sci U S A 92:5307–5311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Schmidt T, Friehs K, Schleef M et al (1999) Quantitative analysis of plasmid forms by agarose and capillary gel electrophoresis. Anal Biochem 274:235–240

    Article  CAS  PubMed  Google Scholar 

  61. Remaut K, Sander NN, Fayazpour F et al (2006) Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes. J Control Release 115:335–343

    Article  CAS  PubMed  Google Scholar 

  62. Wooddell CI, Subbotin VM, Sebestyén MG et al (2011) Muscle damage after delivery of naked plasmid DNA into skeletal muscles is batch dependent. Hum Gene Ther 22:225–235

    Article  CAS  PubMed  Google Scholar 

  63. Hyde SC, Pringle IA, Abdullah S et al (2008) CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 26:549–551

    Article  CAS  PubMed  Google Scholar 

  64. Rischmüller A, Viefhues M, Dieding M et al (2013) Analytic tools in minicircle production. In: Schleef M (ed) Minicircle and miniplasmid DNA vectors—the future of non-viral and viral gene transfer. Weinheim, Wiley-Blackwell

    Google Scholar 

  65. Ribeiro S, Mairhofer J, Madeira C et al (2011) Plasmid DNA size does affect nonviral gene delivery efficiency in stem cells. Cell Reprogram 14:130–137

    Google Scholar 

Download references

Acknowledgement

We thank the research team of PlasmidFactory, Bielefeld, Germany for critical discussion and contributing work and Janine Conde-Lopez for support with figures; the German Federal Ministry of Education and Research (BMBF) for grants BioChancePLUS (0313749) and Nano-4-Life (13N9063). Part of this work has also been supported by the CliniGene Network of Excellence funded by the European Commission FP6 Research Programme under contract LSHB-CT-2006-018933.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schleef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schleef, M., Schirmbeck, R., Reiser, M., Michel, ML., Schmeer, M. (2015). Minicircle: Next Generation DNA Vectors for Vaccination. In: Walther, W., Stein, U. (eds) Gene Therapy of Solid Cancers. Methods in Molecular Biology, vol 1317. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2727-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2727-2_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2726-5

  • Online ISBN: 978-1-4939-2727-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics