Skip to main content

Application of In Situ Diffraction in High-Throughput Structure Determination Platforms

  • Protocol
  • First Online:
Structural Proteomics

Abstract

Macromolecular crystallography (MX) is the most powerful technique available to structural biologists to visualize in atomic detail the macromolecular machinery of the cell. Since the emergence of structural genomics initiatives, significant advances have been made in all key steps of the structure determination process. In particular, third-generation synchrotron sources and the application of highly automated approaches to data acquisition and analysis at these facilities have been the major factors in the rate of increase of macromolecular structures determined annually. A plethora of tools are now available to users of synchrotron beamlines to enable rapid and efficient evaluation of samples, collection of the best data, and in favorable cases structure solution in near real time. Here, we provide a short overview of the emerging use of collecting X-ray diffraction data directly from the crystallization experiment. These in situ experiments are now routinely available to users at a number of synchrotron MX beamlines. A practical guide to the use of the method on the MX suite of beamlines at Diamond Light Source is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garman EF (2014) Developments in X-ray crystallographic structure determination of biological macromolecules. Science 343:1102–1108

    Article  CAS  PubMed  Google Scholar 

  2. Kantardjieff KA, Rupp B (2003) Matthews coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci 12:1865–1871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Joachimiak A (2009) High-throughput crystallography for structural genomics. Curr Opin Struct Biol 19:573–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Beteva A, Cipriani F, Cusack S et al (2006) High-throughput sample handling and data collection at synchrotrons: embedding the ESRF into the high-throughput gene-to-structure pipeline. Acta Crystallogr D Biol Crystallogr 62:1162–1169

    Article  CAS  PubMed  Google Scholar 

  5. Cohen AE, Ellis PJ, Miller MD et al (2002) An automated system to mount cryo-cooled protein crystals on a synchrotron beamline, using compact sample cassettes and a small-scale robot. J Appl Crystallogr 35:720–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ohana J, Jacquamet L, Joly J et al (2004) CATS: a cryogenic automated transfer system installed on the beamline FIP at ESRF. J Appl Crystallogr 37:72–77

    Article  CAS  Google Scholar 

  7. http://www.rigaku.com/products/protein/actor

  8. Cipriani F, Felisaz F, Launer L et al (2006) Automation of sample mounting for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 62:1251–1259

    Article  CAS  PubMed  Google Scholar 

  9. http://marresearch.marxperts.com/products.marcsc.html

  10. Snell G, Cork C, Nordmeyer R et al (2004) Automated sample mounting and alignment system for biological crystallography at a synchrotron source. Structure 12:537–545

    Article  CAS  PubMed  Google Scholar 

  11. Jacquamet L, Ohana J, Joly J et al (2004) Automated analysis of vapor diffusion crystallization drops with an X-ray beam. Structure 12:1219–1225

    Article  CAS  PubMed  Google Scholar 

  12. Broennimann C, Eikenberry EF, Henrich B et al (2006) The PILATUS 1M detector. J Synchrotron Radiat 13:120–130

    Article  CAS  PubMed  Google Scholar 

  13. Axford D, Owen RL, Aishima J et al (2012) In situ macromolecular crystallography using microbeams. Acta Crystallogr D Biol Crystallogr 68:592–600

    Article  CAS  PubMed  Google Scholar 

  14. Owen RL, Axford D, Nettleship JE et al (2012) Outrunning free radicals in room-temperature macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 68:810–818

    Article  CAS  PubMed  Google Scholar 

  15. Owen RL, Paterson N, Axford D et al (2014) Exploiting fast detectors to enter a new dimension in room-temperature crystallography. Acta Crystallogr D Biol Crystallogr 70:1248–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ren J, Wang X, Hu Z et al (2013) Picornavirus uncoating intermediate captured in atomic detail. Nat Commun 4:1929

    PubMed Central  PubMed  Google Scholar 

  17. Wang X, Peng W, Ren J et al (2012) A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol 19:424–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bingel-Erlenmeyer R, Olieric V, Grimshaw JPA et al (2011) SLS crystallization platform at beamline X06DA: a fully automated pipeline enabling in situ X-ray diffraction screening. Cryst Growth Des 11:916–923

    Article  CAS  Google Scholar 

  19. Deller MC, Rupp B (2014) Approaches to automated protein crystal harvesting. Acta Crystallogr F Struct Biol Commun 70:133–155

    Article  CAS  PubMed  Google Scholar 

  20. le Maire A, Gelin M, Pochet S et al (2011) In-plate protein crystallization, in situ ligand soaking and X-ray diffraction. Acta Crystallogr D Biol Crystallogr 67:747–755

    Article  PubMed  Google Scholar 

  21. Lobley CM, Aller P, Douangamath A et al (2012) Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:1427–1433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kiefersauer R, Stetefeld J, Gomis-Ruth FX et al (1996) Protein-crystal density by volume measurement and amino-acid analysis. J Appl Crystallogr 29:311–317

    Article  CAS  Google Scholar 

  23. Kiefersauer R, Than ME, Dobbek H et al (2000) A novel free-mounting system for protein crystals: transformation and improvement of diffraction power by accurately controlled humidity changes. J Appl Crystallogr 33:1223–1230

    Article  CAS  Google Scholar 

  24. Bowler MW, Montgomery MG, Leslie AG, Walker JE (2006) Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F(1)-ATPase by controlled dehydration. Acta Crystallogr D Biol Crystallogr 62:991–995

    Article  PubMed  Google Scholar 

  25. Russi S, Juers DH, Sanchez-Weatherby J et al (2011) Inducing phase changes in crystals of macromolecules: status and perspectives for controlled crystal dehydration. J Struct Biol 175:236–243

    Article  CAS  PubMed  Google Scholar 

  26. Sanchez-Weatherby J, Bowler MW, Huet J et al (2009) Improving diffraction by humidity control: a novel device compatible with X-ray beamlines. Acta Crystallogr D Biol Crystallogr 65:1237–1246

    Article  CAS  PubMed  Google Scholar 

  27. Douangamath A, Aller P, Lukacik P et al (2013) Using high-throughput in situ plate screening to evaluate the effect of dehydration on protein crystals. Acta Crystallogr D Biol Crystallogr 69:920–923

    Article  CAS  PubMed  Google Scholar 

  28. Winston PW, Bates DH (1960) Saturated solutions for the control of humidity in biological research. Ecology 41:232–237

    Article  Google Scholar 

  29. Ji X, Sutton G, Evans G et al (2010) How baculovirus polyhedra fit square pegs into round holes to robustly package viruses. EMBO J 29:505–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Giordano R, Leal RMF, Bourenkov GP et al (2012) The application of hierarchical cluster analysis to the selection of isomorphous crystals. Acta Crystallogr D Biol Crystallogr 68:649–658

    Article  CAS  PubMed  Google Scholar 

  31. Liu Q, Dahmane T, Zhang Z et al (2012) Structures from anomalous diffraction of native biological macromolecules. Science 336:1033–1037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Winter G (2010) xia2: an expert system for macromolecular crystallography data reduction. J Appl Crystallogr 43:186–190

    Article  CAS  Google Scholar 

  33. Foadi J, Aller P, Alguel Y et al (2013) Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 69:1617–1632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Leslie AG (2006) The integration of macromolecular diffraction data. Acta Crystallogr D Biol Crystallogr 62:48–57

    Article  PubMed  Google Scholar 

  35. Leslie AG, Powell HR (2007) Processing diffraction data with mosflm evolving. Methods Macromol Crystallogr 245:41–51

    Article  Google Scholar 

  36. Sauter NK, Grosse-Kunstleve RW, Adams PD (2004) Robust indexing for automatic data collection. J Appl Crystallogr 37:399–409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69:1204–1214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Evans P (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D Biol Crystallogr 6:282–292

    Article  Google Scholar 

  39. Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66:125–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. http://www.opengda.org/

  42. Delageniere S, Brenchereau P, Launer L et al (2011) ISPyB: an information management system for synchrotron macromolecular crystallography. Bioinformatics 27:3186–3192

    Article  CAS  PubMed  Google Scholar 

  43. Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr 66:133–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Brehm W, Diederichs K (2014) Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr D Biol Crystallogr 70:101–109

    Article  CAS  PubMed  Google Scholar 

  45. Chirgadze NY, Kisselman G, Qiu W et al (2012) X-CHIP: an integrated platform for high-throughput protein crystallography. In: Benedict JB (ed) Recent advances in crystallography. InTech, Rijeka, pp 87–96

    Google Scholar 

  46. Dhouib K, Khan MC, Pfleging W et al (2009) Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab Chip 9:1412–1421

    Article  CAS  PubMed  Google Scholar 

  47. Gavira JA, Toh D, Lopez-Jaramillo J et al (2002) Ab initio crystallographic structure determination of insulin from protein to electron density without crystal handling. Acta Crystallogr D Biol Crystallogr 58:1147–1154

    Article  PubMed  Google Scholar 

  48. Gerdts CJ, Elliott M, Lovell S et al (2008) The plug-based nanovolume microcapillary protein crystallization system (MPCS). Acta Crystallogr D Biol Crystallogr 64:1116–1122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Gerdts CJ, Stahl GL, Napuli A et al (2010) Nanovolume optimization of protein crystal growth using the microcapillary protein crystallization system. J Appl Crystallogr 43:1078–1083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kisselman G, Qiu W, Romanov V et al (2011) X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection. Acta Crystallogr D Biol Crystallogr 67:533–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. May A, Fowler B, Frankel KA et al (2008) Diffraction-capable microfluidic crystallization chips for screening and structure determination. Acta Crystallogr Sect A Found Adv 64:C133–C134

    Article  Google Scholar 

  52. Shim JU, Cristobal G, Link DR (2007) Using microfluidics to decouple nucleation and growth of protein crystals. Cryst Growth Des 7:2192–2194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Yadav MK, Gerdts CJ, Sanishvili R et al (2005) In situ data collection and structure refinement from microcapillary protein crystallization. J Appl Crystallogr 38:900–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Cipriani F, Rower M, Landret C et al (2012) CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films. Acta Crystallogr D Biol Crystallogr 68:1393–1399

    Article  CAS  PubMed  Google Scholar 

  55. Mueller U, Darowski N, Fuchs MR et al (2012) Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J Synchrotron Radiat 19:442–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Hirata K, Kawano Y, Ueno G et al (2013) Achievement of protein micro-crystallography at SPring-8 beamline BL32XU. J Phys Conf Ser 425:012002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Walsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Aller, P. et al. (2015). Application of In Situ Diffraction in High-Throughput Structure Determination Platforms. In: Owens, R. (eds) Structural Proteomics. Methods in Molecular Biology, vol 1261. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2230-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2230-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2229-1

  • Online ISBN: 978-1-4939-2230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics