Skip to main content

Immunofluorescence Microtip Sensor for Point-of-Care Tuberculosis (TB) Diagnosis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1256))

Abstract

A immunofluorescence microtip sensor was developed for specific detection of Mycobacterium cells in sputum samples by the combination of electric field, streaming flow, and immuno-affinity binding. The detection limit was 200 CFU/mL in human sputum, which was comparable to PCR but without requiring bacteriological culture, centrifugation, or nucleic acid amplification. In spite of the complex nature of physical, chemical, and biological mechanisms, the simple operation of “dipping and withdrawal” of tips will allow for screening by minimally trained personnel within 30 min. In addition, the minimal power requirement (5 W) combined with low assay cost is ideal for point-of-care (POC) screening in resource-limited settings.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. WHO (2010) Global tuberculosis control: WHO Report 2010. WHO, Geneva

    Google Scholar 

  2. WHO (2009) Global tuberculosis control: surveillance, planning, financing. WHO, Geneva

    Google Scholar 

  3. Lienhardt C, Rowley J, Manneh K, Lahai G, Needham D, Milligan P et al (2001) Factors affecting time delay to treatment in a tuberculosis control programme in a sub-Saharan African country: the experience of The Gambia. Int J Tuberc Lung Dis 5:233–239

    CAS  Google Scholar 

  4. Golub JE, Bur S, Cronin WA, Gange S, Baruch N, Comstock GW et al (2006) Delayed tuberculosis diagnosis and tuberculosis transmission. Int J Tuberc Lung Dis 10:24–30

    CAS  Google Scholar 

  5. Aber VR, Allen BW, Mitchison DA, Ayuma P, Edwards EA, Keyes AB (1980) Quality-control in tuberculosis bacteriology. 1. Laboratory studies on isolated positive cultures and the efficiency of direct smear examination. Tubercle 61:123–133

    Article  CAS  Google Scholar 

  6. Boyd JC, Marr JJ (1975) Decreasing reliability of acid-fast smear techniques for detection of tuberculosis. Ann Intern Med 82:489–492

    Article  CAS  Google Scholar 

  7. Steingart KR, Ramsay A, Pai M (2007) Optimizing sputum smear microscopy for the diagnosis of pulmonary tuberculosis. Expert Rev Anti Infect Ther 5:327–331

    Article  Google Scholar 

  8. Perkins MD, Small PM (2006) Partnering for better microbial diagnostics. Nat Biotechnol 24:919–921

    Article  CAS  Google Scholar 

  9. Keeler E, Perkins MD, Small P, Hanson C, Reed S, Cunningham J et al (2006) Reducing the global burden of tuberculosis: the contribution of improved diagnostics. Nature 444(Suppl 1):49–57

    Article  Google Scholar 

  10. Lazcka O, Del Campo FJ, Munoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217

    Article  CAS  Google Scholar 

  11. Torres-Chavolla E, Alocilja EC (2009) Aptasensors for detection of microbial and viral pathogens. Biosens Bioelectron 24:3175–3182

    Article  CAS  Google Scholar 

  12. Elliott AM, Luo N, Tembo G, Halwiindi B, Steenbergen G, Machiels L et al (1990) Impact of HIV on tuberculosis in Zambia—a cross-sectional study. Br Med J 301:412–415

    Article  CAS  Google Scholar 

  13. Garland LH (1959) Studies on the accuracy of diagnostic procedures. Am J Roentgenol Radium Ther Nucl Med 82:25–38

    CAS  Google Scholar 

  14. Rodriguez-Lazaro D, D’Agostino M, Herrewegh A, Pla M, Cook N, Ikonomopoulos J (2005) Real-time PCR-based methods for detection of Mycobacterium avium Subsp paratuberculosis in water and milk. Int J Food Microbiol 101:93–104

    Article  CAS  Google Scholar 

  15. Thomson LM, Traore H, Yesilkaya H, Doig C, Steingrimsdottir H, Garcia L et al (2005) An extremely rapid and simple DNA-release method for detection of M. tuberculosis from clinical specimens. J Microbiol Methods 63:95–98

    Article  CAS  Google Scholar 

  16. Choi YJ, Hu Y, Mahmood A (1996) Clinical significance of a polymerase chain reaction assay for the detection of Mycobacterium tuberculosis. Am J Clin Pathol 105:200–204

    CAS  Google Scholar 

  17. Durmaz R, Aydin A, Durmaz B, Aydin NE, Akbasak BS, Gunal S (1997) Sensitivity of two-stage PCR amplification for detection of Mycobacterium tuberculosis in paraffin-embedded tissues. J Microbiol Methods 29:69–75

    Article  Google Scholar 

  18. Krambovitis E, Lock PE, Mcillmurray MB, Hendrickse W, Holzel H (1984) Rapid diagnosis of tuberculous meningitis by latex particle agglutination. Lancet 2:1229–1231

    Article  CAS  Google Scholar 

  19. Tamminen M, Joutsjoki T, Sjoblom M, Joutsen M, Palva A, Ryhanen EL et al (2004) Screening of lactic acid bacteria from fermented vegetables by carbohydrate profiling and PCR-ELISA. Lett Appl Microbiol 39:439–444

    Article  CAS  Google Scholar 

  20. Nassau E, Parsons ER, Johnson GD (1976) The detection of antibodies to Mycobacterium tuberculosis by microplate enzyme-linked immunosorbent assay (ELISA). Tubercle 57:67–70

    Article  CAS  Google Scholar 

  21. Delacourt C, Gobin J, Gaillard JL, Deblic J, Veron M, Scheinmann P (1993) Value of ELISA using antigen-60 for the diagnosis of tuberculosis in children. Chest 104:393–398

    Article  CAS  Google Scholar 

  22. Middlebrook G, Reggiardo Z, Tigertt WD (1977) Automatable radiometric detection of growth of Mycobacterium-tuberculosis in selective media. Am Rev Respir Dis 115:1066–1069

    CAS  Google Scholar 

  23. Gamboa F, Manterola JM, Lonca J, Matas L, Vinado B, Gimenez M et al (1997) Detection and identification of mycobacteria by amplification of RNA and DNA in pretreated blood and bone marrow aspirates by a simple lysis method. J Clin Microbiol 35:2124–2128

    CAS  Google Scholar 

  24. Cambau E, Wichlacz C, Truffot-Pernot C, Jarlier V (1999) Evaluation of the new MB Redox system for detection of growth of mycobacteria. J Clin Microbiol 37:2013–2015

    CAS  Google Scholar 

  25. Qin DL, He XX, Wang KM, Tan WH (2008) Using fluorescent nanoparticles and SYBR Green I based two-color flow cytometry to determine Mycobacterium tuberculosis avoiding false positives. Biosens Bioelectron 24:626–631

    Article  CAS  Google Scholar 

  26. Griffiths D, Hall G (1993) Biosensors—what real progress is being made. Trends Biotechnol 11:122–130

    Article  CAS  Google Scholar 

  27. Owen VM (1994) Market requirements for advanced biosensors in healthcare. Biosens Bioelectron 9:xxix–xxxv

    Article  CAS  Google Scholar 

  28. Bown MR, Meinhart CD (2006) AC electroosmotic flow in a DNA concentrator. Microfluid Nanofluidics 2:513–523

    Article  CAS  Google Scholar 

  29. Wong PK, Chen CY, Wang TH, Ho CM (2004) Electrokinetic bioprocessor for concentrating cells and molecules. Anal Chem 76:6908–6914

    Article  CAS  Google Scholar 

  30. Asbury CL, van den Engh G (1998) Trapping of DNA in nonuniform oscillating electric fields. Biophys J 74:1024–1030

    Article  CAS  Google Scholar 

  31. Gimsa J (2001) A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochemistry 54:23–31

    Article  CAS  Google Scholar 

  32. Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal Chem 74:3362–3371

    Article  CAS  Google Scholar 

  33. Yeo WH, Chung JH, Liu YL, Lee KH (2009) Size-specific concentration of DNA to a nanostructured tip using dielectrophoresis and capillary action. J Phys Chem B 113:10849–10858

    Article  CAS  Google Scholar 

  34. Yeo WH, Liu S, Chung JH, Liu YL, Lee KH (2009) Rapid detection of Mycobacterium tuberculosis cells by using microtip-based immunoassay. Anal Bioanal Chem 393:1593–1600

    Article  CAS  Google Scholar 

  35. Yeo WH, Chou FL, Fotouhi G, Oh K, Stevens BT, Tseng HY et al (2010) Size-selective immunofluorescence of Mycobacterium tuberculosis cells by capillary- and viscous forces. Lab Chip 10:3178–3181

    Article  CAS  Google Scholar 

  36. Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z et al (2013) Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7:9147–9155

    Article  CAS  Google Scholar 

  37. Miller AR, Davis GL, Oden ZM, Razavi MR, Fateh A, Ghazanfari M et al (2010) Portable, battery-operated, low-cost, bright field and fluorescence microscope. PLoS One 5:4

    Google Scholar 

  38. Minion J, Pai M, Ramsay A, Menzies D, Greenaway C (2011) Comparison of LED and conventional fluorescence microscopy for detection of acid fast bacilli in a low-incidence setting. PLoS One 6:e22495

    Article  CAS  Google Scholar 

  39. Trusov A, Bumgarner R, Valijev R, Chestnova R, Talevski S, Vragoterova C et al (2009) Comparison of Lumin LED fluorescent attachment, fluorescent microscopy and Ziehl-Neelsen for AFB diagnosis. Int J Tuberc Lung Dis 13:836–841

    Google Scholar 

  40. Wayne LG (1976) Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions. Am Rev Respir Dis 114:807–811

    CAS  Google Scholar 

  41. Kim J-H, Yeo W-H, Shu Z, Soelberg SD, Inoue S, Kalyanasundaram D et al (2012) Immunosensor towards low-cost, rapid diagnosis of tuberculosis. Lab Chip 12:1437–1440

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of CDC SBIR II Contract (200-2009-31946) and the grant from the Catalysis Foundation for Health. In addition, J.C., J.K., and W.Y. acknowledge the support of NSF Career (ECCS-0846454). We appreciate valuable discussion with Hyun-Boo Lee about the concentration mechanism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hyun Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kim, JH., Lee, KH., Cangelosi, G.A., Chung, JH. (2015). Immunofluorescence Microtip Sensor for Point-of-Care Tuberculosis (TB) Diagnosis. In: Rasooly, A., Herold, K. (eds) Mobile Health Technologies. Methods in Molecular Biology, vol 1256. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2172-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2172-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2171-3

  • Online ISBN: 978-1-4939-2172-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics