Skip to main content

Tackling Sampling Challenges in Biomolecular Simulations

  • Protocol
  • First Online:
Molecular Modeling of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

Abstract

Molecular dynamics (MD) simulations are a powerful tool to give an atomistic insight into the structure and dynamics of proteins. However, the time scales accessible in standard simulations, which often do not match those in which interesting biological processes occur, limit their predictive capabilities. Many advanced sampling techniques have been proposed over the years to overcome this limitation. This chapter focuses on metadynamics, a method based on the introduction of a time-dependent bias potential to accelerate sampling and recover equilibrium properties of a few descriptors that are able to capture the complexity of a process at a coarse-grained level. The theory of metadynamics and its combination with other popular sampling techniques such as the replica exchange method is briefly presented. Practical applications of these techniques to the study of the Trp-Cage miniprotein folding are also illustrated. The examples contain a guide for performing these calculations with PLUMED, a plugin to perform enhanced sampling simulations in combination with many popular MD codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaw DE, Maragakis P, Lindorff-Larsen K et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346

    Article  PubMed  CAS  Google Scholar 

  2. Beberg AL, Ensign DL, Jayachandran G, Khaliq S, Pande VS (2009) Folding@home: lessons from eight years of volunteer distributed computing, IEEE International Symposium on, Parallel & Distributed Processing, 2009. IPDPS 2009, 23-29 May 2009, Rome, pp. 1624–1631

    Google Scholar 

  3. Chipot C, Pohorille A (2007) Free energy calculations: theory and applications in chemistry and biology. Springer, Berlin

    Book  Google Scholar 

  4. Dellago C, Bolhuis PG (2009) Transition path sampling and other advanced simulation techniques for rare events. Adv Polym Sci 221:167–233

    CAS  Google Scholar 

  5. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99:12562–12566

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. Wir Comput Mol Sci 1:826–843

    Article  CAS  Google Scholar 

  7. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  8. Hansmann UHE (1997) Parallel tempering algorithm for conformational studies of biological molecules. Chem Phys Lett 281: 140–150

    Article  CAS  Google Scholar 

  9. Neidigh JW, Fesinmeyer RM, Andersen NH (2002) Designing a 20-residue protein. Nat Struct Biol 9:425–430

    Article  PubMed  CAS  Google Scholar 

  10. Bonomi M, Branduardi D, Bussi G et al (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180:1961–1972

    Article  CAS  Google Scholar 

  11. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603

    Article  PubMed  Google Scholar 

  12. Bonomi M, Parrinello M (2010) Enhanced sampling in the well-tempered ensemble. Phys Rev Lett 104:190601

    Article  PubMed  CAS  Google Scholar 

  13. Bonomi M, Barducci A, Parrinello M (2009) Reconstructing the equilibrium Boltzmann distribution from well-tempered metadynamics. J Comput Chem 30:1615–1621

    Article  PubMed  CAS  Google Scholar 

  14. Barducci A, Bonomi M, Parrinello M (2010) Linking well-tempered metadynamics simulations with experiments. Biophys J 98:L44–L46

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Earl DJ, Deem MW (2005) Parallel tempering: theory, applications, and new perspectives. Phys Chem Chem Phys 7:3910–3916

    Article  PubMed  CAS  Google Scholar 

  16. Bussi G, Gervasio FL, Laio A, Parrinello M (2006) Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J Am Chem Soc 128:13435–13441

    Article  PubMed  CAS  Google Scholar 

  17. Deighan M, Bonomi M, Pfaendtner J (2012) Efficient simulation of explicitly solvated proteins in the well-tempered ensemble. J Chem Theory Comput 8:2189–2192

    Article  CAS  Google Scholar 

  18. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  19. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) PLUMED 2: new feathers for an old bird, Comput Phys Commun 185:604–613

    Google Scholar 

  20. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera - A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  21. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95

    Article  Google Scholar 

  22. Qiu LL, Pabit SA, Roitberg AE, Hagen SJ (2002) Smaller and faster: the 20-residue Trp-cage protein folds in 4 mu s. J Am Chem Soc 124:12952–12953

    Article  PubMed  CAS  Google Scholar 

  23. Streicher WW, Makhatadze GI (2007) Unfolding thermodynamics of Trp-cage, a 20 residue miniprotein, studied by differential scanning calorimetry and circular dichroism spectroscopy. Biochemistry US 46:2876–2880

    Article  CAS  Google Scholar 

  24. Neuweiler H, Doose S, Sauer M (2005) A microscopic view of miniprotein folding: enhanced folding efficiency through formation of an intermediate. Proc Natl Acad Sci U S A 102:16650–16655

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Ahmed Z, Beta IA, Mikhonin AV, Asher SA (2005) UV-resonance Raman thermal unfolding study of Trp-cage shows that it is not a simple two-state miniprotein. J Am Chem Soc 127:10943–10950

    Article  PubMed  CAS  Google Scholar 

  26. Zhou RH (2003) Trp-cage: folding free energy landscape in explicit water. Proc Natl Acad Sci U S A 100:13280–13285

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Ota M, Ikeguchi M, Kidera A (2004) Phylogeny of protein-folding trajectories reveals a unique pathway to native structure. Proc Natl Acad Sci U S A 101:17658–17663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Juraszek J, Bolhuis PG (2006) Sampling the multiple folding mechanisms of Trp-cage in explicit solvent. Proc Natl Acad Sci U S A 103:15859–15864

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Paschek D, Nymeyer H, Garcia AE (2007) Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: on the structure and possible role of internal water. J Struct Biol 157:524–533

    Article  PubMed  CAS  Google Scholar 

  30. Marinelli F, Pietrucci F, Laio A, Piana S (2009) A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations. PLoS Comput Biol 5:e1000452

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334:517–520

    Article  PubMed  CAS  Google Scholar 

  32. Hornak V, Abel R, Okur A et al (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  PubMed  CAS  Google Scholar 

  33. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  34. Branduardi D, Gervasio FL, Parrinello M (2007) From A to B in free energy space. J Chem Phys 126:054103

    Article  PubMed  Google Scholar 

  35. Ceriotti M, Tribello GA, Parrinello M (2011) Simplifying the representation of complex free-energy landscapes using sketch-map. Proc Natl Acad Sci U S A 108:13023–13028

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Spiwok V, Kralova B (2011) Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap. J Chem Phys 135:224504

    Article  PubMed  Google Scholar 

  37. Piana S, Laio A (2007) A bias-exchange approach to protein folding. J Phys Chem B 111:4553–4559

    Article  PubMed  CAS  Google Scholar 

  38. Sindhikara DJ, Emerson DJ, Roitberg AE (2010) Exchange often and properly in replica exchange molecular dynamics. J Chem Theory Comput 6:2804–2808

    Article  CAS  Google Scholar 

  39. Torrie GM, Valleau JP (1977) Non-physical sampling distributions in monte-carlo free-energy estimation - umbrella sampling. J Comput Phys 23:187–199

    Article  Google Scholar 

  40. Branduardi D, Bussi G, Parrinello M (2012) Metadynamics with adaptive gaussians. J Chem Theory Comput 8:2247–2254

    Article  CAS  Google Scholar 

  41. Prakash MK, Barducci A, Parrinello M (2011) Replica temperatures for uniform exchange and efficient roundtrip times in explicit solvent parallel tempering simulations. J Chem Theory Comput 7:2025–2027

    Article  CAS  Google Scholar 

  42. Nose S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81:511–519

    Article  CAS  Google Scholar 

  43. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  PubMed  Google Scholar 

  44. Rosta E, Buchete NV, Hummer G (2009) Thermostat artifacts in replica exchange molecular dynamics simulations. J Chem Theory Comput 5:1393–1399

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Ceriotti M, Brain GAR, Riordan O, Manolopoulos DE (2012) The inefficiency of re-weighted sampling and the curse of system size in high-order path integration. P Roy Soc a-Math Phys 468:2–17

    Article  Google Scholar 

  46. Angioletti-Uberti S, Ceriotti M, Lee PD, Finnis MW (2010) Solid-liquid interface free energy through metadynamics simulations. Phys Rev B 81:125416

    Article  Google Scholar 

  47. Berteotti A, Barducci A, Parrinello M (2011) Effect of urea on the beta-hairpin conformational ensemble and protein denaturation mechanism. J Am Chem Soc 133: 17200–17206

    Article  PubMed  CAS  Google Scholar 

  48. Sutto L, D’Abramo M, Gervasio FL (2010) Comparing the efficiency of biased and unbiased molecular dynamics in reconstructing the free energy landscape of met-enkephalin. J Chem Theory Comput 6:3640–3646

    Article  CAS  Google Scholar 

  49. Kullback S, Leibler RA (1951) On Information and Sufficiency. Ann Math Stat 22:142–143

    Article  Google Scholar 

Download references

Acknowledgements

AB thanks the Swiss National Science Foundation for financial support under the Ambizione grant PZ00P2_136856. J. P. acknowledges the support of NSF award CMMI-1032368. The simulations of Trp-Cage miniprotein were made possible in part by the National Science Foundation through TeraGrid resources provided by NICS. These simulations were also facilitated through the use of computational, storage, and networking infrastructure provided by the Hyak supercomputer system, supported in part by the University of Washington eScience Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Bonomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Barducci, A., Pfaendtner, J., Bonomi, M. (2015). Tackling Sampling Challenges in Biomolecular Simulations. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics