Skip to main content

T-Cell Epitope Prediction Methods: An Overview

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1184))

Abstract

The scientific community is overwhelmed by the voluminous increase in the quantum of data on biological systems, including but not limited to the immune system. Consequently, immunoinformatics databases are continually being developed to accommodate this ever increasing data and analytical tools are continually being developed to analyze the same. Therefore, researchers are now equipped with numerous databases, analytical and prediction tools, in anticipation of better means of prevention of and therapeutic intervention in diseases of humans and other animals.

Epitope is a part of an antigen, recognized either by B- or T-cells and/or molecules of the host immune system. Since only a few amino acid residues that comprise an epitope (instead of the whole protein) are sufficient to elicit an immune response, attempts are being made to identify or predict this critical stretch or patch of amino acid residues, i.e., T-cell epitopes and B-cell epitopes to be included in multiple-subunit vaccines.

T-cell epitope prediction is a challenge owing to the high degree of MHC polymorphism and disparity in the volume of data on various steps encountered in the generation and presentation of T-cell epitopes in the living systems. Many algorithms/methods developed to predict T-cell epitopes and Web servers incorporating the same are available. These are based on approaches like considering amphipathicity profiles of proteins, sequence motifs, quantitative matrices (QM), artificial neural networks (ANN), support vector machines (SVM), quantitative structure activity relationship (QSAR) and molecular docking simulations, etc. This chapter aims to introduce the reader to the principle(s) underlying some of these methods/algorithms as well as procedural and practical aspects of using the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uebel S, Tampé R (1999) Specificity of the proteasome and the TAP transporter. Curr Opin Immunol 11:203–208

    Article  CAS  PubMed  Google Scholar 

  2. Niedermann G, King G, Butz S et al (1996) The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides. Proc Natl Acad Sci U S A 93:8572–8577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Craiu A, Akopian T, Goldberg A et al (1997) Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci U S A 94:10850–10855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Koopmann JO, Post M, Neefjes JJ et al (1996) Translocation of long peptides by transporters associated with antigen processing (TAP). Eur J Immunol 26:1720–1728

    Article  CAS  PubMed  Google Scholar 

  5. Uebel S, Kraas W, Kienle S et al (1997) Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. Proc Natl Acad Sci U S A 94:8976–8981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gubler B, Daniel S, Armandola EA et al (1998) Substrate selection by transporters associated with antigen processing occurs during peptide binding to TAP. Mol Immunol 35:427–433

    Article  CAS  PubMed  Google Scholar 

  7. Kindt TJ, Osborne BA, Goldsby RA (2006) Kuby immunology. W. H. Freeman & Company, New York

    Google Scholar 

  8. Robinson J, Halliwell JA, McWilliam H et al (2013) The IMGT/HLA Database. Nucleic Acids Res 41:D1222–D1227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lund O, Nielsen M, Kesmir C et al (2004) Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics 55:797–810

    Article  CAS  PubMed  Google Scholar 

  10. Doytchinova IA, Flower DR (2005) In silico identification of supertypes for class II MHCs. J Immunol 174:7085–7095

    Article  CAS  PubMed  Google Scholar 

  11. Giudicelli V, Duroux P, Ginestoux C et al (2006) IMGT/LIGM-DB, the IMGT® comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res 34:D781–D784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kaas Q, Ruiz M, Lefranc M-P (2004) IMGT/3Dstructure-DB and IMGT/Structural Query, a database and a tool for immunoglobulin, T cell receptor and MHC structural data. Nucleic Acids Res 32:D208–D210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ehrenmann F, Lefranc M-P (2011) IMGT/ 3Dstructure-DB: Querying the IMGT Database for 3D Structures in Immunology and Immunoinformatics (IG or Antibodies, TR, MH, RPI, and FPIA). Cold Spring Harb Protoc 2011(6):750–761. doi:10.1101/pdb.prot5637

    PubMed  Google Scholar 

  14. Robinson J, Waller MJ, Parham P et al (2003) IMGT/HLA and IMGT/MHC sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 31:311–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. DeLisi C, Berzofski JA (1985) T-cell antigenic sites tend to be amphipathic structures. Proc Natl Acad Sci U S A 82:7048–7052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Margalit H, Spouge JL, Cornette JL et al (1987) Prediction of immunodominant helper T cell antigenic sites from the primary sequence. J Immunol 138:2213–2229

    CAS  PubMed  Google Scholar 

  17. Geluk A, Van Meijgaarden KE, Janson AA et al (1992) Functional analysis of DR17(DR3)-restricted mycobacterial T cell epitopes reveals DR17-binding motif and enables the design of allele specific competitor peptides. J Immunol 149:2864–2871

    CAS  PubMed  Google Scholar 

  18. Malcherek G, Falk K, Rötzschke O et al (1993) Natural peptide ligand motifs of two HLA molecules associated with myasthenia gravis. Int Immunol 5:1229–1237

    Article  CAS  PubMed  Google Scholar 

  19. Geluk A, van Meijgaarden KE, Southwood S et al (1994) HLADR3 molecules can bind peptides carrying two alternative specific submotifs. J Immunol 152:5742–5748

    CAS  PubMed  Google Scholar 

  20. Seeger FH, Schirle M, Keilholz W et al (1999) Peptide motif of HLA-B*1510. Immunogenetics 49:996–999

    Article  CAS  PubMed  Google Scholar 

  21. Meister GE, Roberts CG, Berzofsky JA et al (1995) Two novel T cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences. Vaccine 13:581–591

    Article  CAS  PubMed  Google Scholar 

  22. Rammensee H, Bachmann J, Emmerich NP et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    Article  CAS  PubMed  Google Scholar 

  23. Bian H, Hammer J (2004) Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE. Methods 34:468–475

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L, Chen Y, Wong H-S et al (2012) TEPITOPEpan: Extending TEPITOPE for Peptide Binding Prediction Covering over 700 HLA-DR Molecules. PLoS One 7:e30483. doi:10.1371/journal.pone.0030483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152: 163–175

    CAS  PubMed  Google Scholar 

  26. Bhasin M, Raghava GPS (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22:3195–3201

    Article  CAS  PubMed  Google Scholar 

  27. Bhasin M, Raghava GPS (2007) A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J Biosci 32: 31–42

    Article  CAS  PubMed  Google Scholar 

  28. Rojas R (1996) Neural networks: a systematic introduction. Springer, Berlin

    Book  Google Scholar 

  29. Narayanan A, Keedwell EC, Olsson B (2002) Artificial intelligence techniques for bioinformatics. Appl Bioinformatics 1:191–222

    CAS  PubMed  Google Scholar 

  30. Yang ZR (2010) Neural networks. Methods Mol Biol 609:197–222. doi:10.1007/978-1-60327-241-4_12

    Article  PubMed  Google Scholar 

  31. Leman JK, Mueller R, Karakas M (2013) Simultaneous prediction of protein secondary structure and transmembrane spans. Proteins 81:1127–1140. doi:10.1002/prot.24258

    Article  CAS  PubMed  Google Scholar 

  32. Yang ZR (2004) Biological applications of support vector machines. Brief Bioinform 5: 328–338

    Article  CAS  PubMed  Google Scholar 

  33. Byvatov E, Schneider G (2003) Support vector machine applications in bioinformatics. Appl Bioinformatics 2:67–77

    PubMed  Google Scholar 

  34. Kadam K, Sawant S, Kulkarni-Kale U et al. (2013) Prediction of protein function based on machine learning methods: an overview. In: Introduction to Sequence and Genome Analysis, iConcept Press Ltd., Hong Kong. (Accepted for publication)

    Google Scholar 

  35. Lata S, Bhasin M, Raghava GP (2009) MHCBN 4.0: A database of MHC/TAP binding peptides and T-cell epitopes. BMC Res Notes 2:61

    Article  PubMed Central  PubMed  Google Scholar 

  36. Larsen MV, Lundegaard C, Lamberth K et al (2005) An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 35:2295–2303

    Article  CAS  PubMed  Google Scholar 

  37. Kesmir C, Nussbaum AK, Schild H et al (2002) Prediction of proteasome cleavage motifs by neural networks. Protein Eng 15:287–296

    Article  CAS  PubMed  Google Scholar 

  38. Nielsen M, Lundegaard C, Lund O et al (2005) The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57:33–41

    Article  CAS  PubMed  Google Scholar 

  39. Peters B, Bulik S, Tampe R et al (2003) Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunol 171:1741–1749

    Article  CAS  PubMed  Google Scholar 

  40. Sturniolo T, Bono E, Ding J et al (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17:555–561

    Article  CAS  PubMed  Google Scholar 

  41. Stranzl T, Larsen MV, Lundegaard C et al (2010) NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62:357–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Dönnes P, Kohlbacher O (2005) Integrated modeling of the major events in the MHC class I antigen processing pathway. Protein Sci 14:2132–2140

    Article  PubMed Central  PubMed  Google Scholar 

  43. Daniel S, Brusic V, Caillat-Zucman S et al (1998) Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules. J Immunol 161:617–624

    CAS  PubMed  Google Scholar 

  44. Donnes P, Elofsson A (2002) Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics 3:25

    Article  PubMed Central  PubMed  Google Scholar 

  45. Brusic V, Rudy G, Harrsison LC (1998) MHCPEP, a database of MHC-binding peptides: Update. Nucleic Acids Res 26: 368–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T-cell epitope prediction. BMC Bioinformatics 7:131. doi: 10.1186/1471-2105-7-131

    Article  PubMed Central  PubMed  Google Scholar 

  47. Toseland CP, Taylor DJ, McSparron H et al (2005) Anti-Jen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res 1:4. doi:10.1186/1745-7580-1-4

    Article  PubMed Central  PubMed  Google Scholar 

  48. Dimitrov I, Garnev P, Flower DR et al (2010) EpiTOP—a proteochemometric tool for MHC class II binding prediction. Bioinformatics 26:2066–2068

    Article  CAS  PubMed  Google Scholar 

  49. Vita R, Zarebski L, Greenbaum JA et al (2010) The immune epitope database 2.0. Nucleic Acids Res 38:D854–D862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Hellberg S, Sjöström M, Skagerberg B et al (1987) Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem 30:1126–1135

    Article  CAS  PubMed  Google Scholar 

  51. Oyarzún P, Ellis PJ, Bodén M et al (2013) PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. BMC Bioinformatics 14:52. doi:10.1186/1471-2105-14-52

    Article  PubMed Central  PubMed  Google Scholar 

  52. Reche PA, Zhang H, Glutting JP et al (2005) EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics 21:2140–2141

    Article  CAS  PubMed  Google Scholar 

  53. Singh H, Raghava GP (2003) ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics 19:1009–1014

    Article  CAS  PubMed  Google Scholar 

  54. Singh H, Raghava GPS (2001) ProPred: Prediction of HLA-DR binding sites. Bioinformatics 17:1236–1237

    Article  CAS  PubMed  Google Scholar 

  55. Zhang GL, Deluca DS, Keskin DB et al (2011) MULTIPRED2: A computational system for large-scale identification of peptides predicted to bind to HLA supertypes and alleles. J Immunol Methods 374:53–61. doi:10.1016/j.jim. 2010.11.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

D.V.D. and U.K.K. gratefully acknowledge financial support under the aegis of Center of Excellence (CoE) grant from the Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urmila Kulkarni-Kale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Desai, D.V., Kulkarni-Kale, U. (2014). T-Cell Epitope Prediction Methods: An Overview. In: De, R., Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 1184. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1115-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1115-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1114-1

  • Online ISBN: 978-1-4939-1115-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics