Skip to main content

RNA Interference as a Tool to Selectively Down-Modulate Protein Function

  • Protocol
  • First Online:
Brain Energy Metabolism

Part of the book series: Neuromethods ((NM,volume 90))

  • 1199 Accesses

Abstract

RNA interference (RNAi) is a rapid and efficient technique to cause highly selective protein loss of function in cells. In this chapter, we would like to describe all necessary steps to implement this approach for the first time in a laboratory that is not used to deal with gene databases information and related technical skills. Using either rational criteria or sophisticated—otherwise straightforward—online software, it is now reasonably feasible for everyone to design the small interfering RNA (siRNA) or the short hairpin RNA (shRNA) molecules to knockdown—or “silence”—your protein of interest. We provide recommendations on how to retrieve the mRNA sequence of your protein of interest from the online databases and to identify the nucleotide-sequence target on the mRNA. In addition, we provide clues aimed to predict the selectivity of the target chosen and to obtain a long-lasting knockdown effect by expressing shRNA from a plasmid vector. How to get high transfection efficiencies in hard-to-transfect-cells, such as primary neurons in culture, and how to test the efficacy of the RNAi approach, is also recommended. We expect to encourage researchers to use this now easily accessible technique as an alternative—or additional—approach to the usually unspecific pharmacological inhibition when studying neural metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  2. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  PubMed  CAS  Google Scholar 

  3. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  PubMed  CAS  Google Scholar 

  4. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  5. Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199–213

    Article  PubMed  CAS  Google Scholar 

  6. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  8. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  PubMed  CAS  Google Scholar 

  9. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  PubMed  CAS  Google Scholar 

  10. http://www.nature.com/nrg/multimedia/rnai/animation/index.html

  11. Mittal V (2004) Improving the efficiency of RNA interference in mammals. Nat Rev Genet 5:355–365

    Article  PubMed  CAS  Google Scholar 

  12. Moffat J, Sabatini DM (2006) Building mammalian signalling pathways with RNAi screens. Nat Rev Mol Cell Biol 7:177–187

    Article  PubMed  CAS  Google Scholar 

  13. Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431:371–378

    Article  PubMed  CAS  Google Scholar 

  14. Silva J, Chang K, Hannon GJ, Rivas FV (2004) RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 23:8401–8409

    Article  PubMed  CAS  Google Scholar 

  15. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Sui G, Soohoo C, el Affar B, Gay F, Shi Y, Forrester WC (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 99:5515–5520

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508

    Article  PubMed  CAS  Google Scholar 

  18. http://www.ncbi.nlm.nih.gov/

  19. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2009) GenBank. Nucleic Acids Res 37:D26–D31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. http://www.ensembl.org/index.html

  21. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GR, Ruffier M, Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J, Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJ, Parker A, Proctor G, Vogel J, Searle SM (2010) Ensembl 2011. Nucleic Acids Res 39:D800–D806

    Article  PubMed  PubMed Central  Google Scholar 

  22. http://vega.sanger.ac.uk/index.html

  23. http://genome.ucsc.edu/

  24. Ashurst JL, Chen CK, Gilbert JG, Jekosch K, Keenan S, Meidl P, Searle SM, Stalker J, Storey R, Trevanion S, Wilming L, Hubbard T (2005) The vertebrate genome annotation (Vega) database. Nucleic Acids Res 33:D459–D465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Kuhn RM, Karolchik D, Zweig AS, Wang T, Smith KE, Rosenbloom KR, Rhead B, Raney BJ, Pohl A, Pheasant M, Meyer L, Hsu F, Hinrichs AS, Harte RA, Giardine B, Fujita P, Diekhans M, Dreszer T, Clawson H, Barber GP, Haussler D, Kent WJ (2009) The UCSC genome browser database: update 2009. Nucleic Acids Res 37:D755–D761

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Leonard SA (2003) APPENDIX 1A: IUPAC/IUB single-letter codes within nucleic acid and amino acid sequences. In: Current protocols in bioinformatics. Wiley, New York

    Google Scholar 

  27. Leonard SA, Littlejohn TG, Baxevanis AD (2006) APPENDIX 1B common file formats. In: Current protocols in bioinformatics. Wiley, New York

    Google Scholar 

  28. http://www.ncbi.nlm.nih.gov/sites/gquery

  29. http://www.ncbi.nlm.nih.gov/nucleotide/

  30. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. http://www.ncbi.nlm.nih.gov/Sitemap/sequenceIDs.html

  32. http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

  33. http://www.ncbi.nlm.nih.gov/Sequin/acc.html

  34. http://www.ncbi.nlm.nih.gov/nuccore

  35. http://www.ncbi.nlm.nih.gov/nuccore/limits

  36. Diaz-Hernandez JI, Almeida A, Delgado-Esteban M, Fernandez E, Bolaños JP (2005) Knockdown of glutamate-cysteine ligase by small hairpin RNA reveals that both catalytic and modulatory subunits are essential for the survival of primary neurons. J Biol Chem 280:38992–39001

    Article  PubMed  CAS  Google Scholar 

  37. http://www.ncbi.nlm.nih.gov/unigene

  38. http://blast.ncbi.nlm.nih.gov/Blast.cgi

  39. Yamada T, Morishita S (2005) Accelerated off-target search algorithm for siRNA. Bioinformatics 21:1316–1324

    Article  PubMed  CAS  Google Scholar 

  40. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20:6877–6888

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226

    Article  PubMed  CAS  Google Scholar 

  42. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  PubMed  CAS  Google Scholar 

  43. Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Du Q, Thonberg H, Wang J, Wahlestedt C, Liang Z (2005) A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res 33:1671–1677

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204

    Article  PubMed  CAS  Google Scholar 

  46. Naito Y, Yamada T, Ui-Tei K, Morishita S, Saigo K (2004) siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res 32:W124–W129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Zecherle GN, Whelen S, Hall BD (1996) Purines are required at the 5′ ends of newly initiated RNAs for optimal RNA polymerase III gene expression. Mol Cell Biol 16:5801–5810

    PubMed  CAS  PubMed Central  Google Scholar 

  48. http://www.ncbi.nlm.nih.gov/snp

  49. http://sidirect2.rnai.jp/

  50. Amarzguioui M, Prydz H (2004) An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 316:1050–1058

    Article  PubMed  CAS  Google Scholar 

  51. Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, Tuschl T (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 13:83–105

    Article  PubMed  CAS  Google Scholar 

  52. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  PubMed  CAS  Google Scholar 

  53. Grimm D, Wang L, Lee JS, Schurmann N, Gu S, Borner K, Storm TA, Kay MA (2010) Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest 120:3106–3119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Martin JN, Wolken N, Brown T, Dauer WT, Ehrlich ME, Gonzalez-Alegre P (2011) Lethal toxicity caused by expression of shRNA in the mouse striatum: implications for therapeutic design. Gene Ther 18:666–673

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  56. www.oligoengine.com

  57. Fu C, Wehr DR, Edwards J, Hauge B (2008) Rapid one-step recombinational cloning. Nucleic Acids Res 36:e54

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jacque JM, Triques K, Stevenson M (2002) Modulation of HIV-1 replication by RNA interference. Nature 418:435–438

    Article  PubMed  CAS  Google Scholar 

  59. Quintana-Cabrera R, Fernandez-Fernandez S, Bobo-Jimenez V, Escobar J, Sastre J, Almeida A, Bolaños JP (2012) γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nat Commun 3:718

    Article  PubMed  PubMed Central  Google Scholar 

  60. https://www.genscript.com/ssl-bin/app/scramble

  61. Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 32:107–108

    Article  PubMed  CAS  Google Scholar 

  62. Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolaños JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752

    Article  PubMed  CAS  Google Scholar 

  63. Miyagishi M, Taira K (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20:497–500

    Article  PubMed  CAS  Google Scholar 

  64. Maestre C, Delgado-Esteban M, Gomez-Sanchez JC, Bolaños JP, Almeida A (2008) Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO J 27:2736–2745

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Almeida A, Bolaños JP, Moreno S (2005) Cdh1/Hct1-APC is essential for the survival of postmitotic neurons. J Neurosci 25:8115–8121

    Article  PubMed  CAS  Google Scholar 

  66. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418:38–39

    Article  PubMed  CAS  Google Scholar 

  67. Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, Chen J, Shankar P, Lieberman J (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 9:347–351

    Article  PubMed  CAS  Google Scholar 

  68. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Castanotto D, Sakurai K, Lingeman R, Li H, Shively L, Aagaard L, Soifer H, Gatignol A, Riggs A, Rossi JJ (2007) Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res 35:5154–5164

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Akhtar S, Benter IF (2007) Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 117:3623–3632

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Chinta SJ, Kumar MJ, Hsu M, Rajagopalan S, Kaur D, Rane A, Nicholls DG, Choi J, Andersen JK (2007) Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci 27:13997–14006

    Article  PubMed  CAS  Google Scholar 

  73. Kesharwani P, Gajbhiye V, Jain NK (2012) A review of nanocarriers for the delivery of small interfering RNA. Biomaterials 33:7138–7150

    Article  PubMed  CAS  Google Scholar 

  74. Sugimoto A (2004) High-throughput RNAi in Caenorhabditis elegans: genome-wide screens and functional genomics. Differentiation 72:81–91

    Article  PubMed  CAS  Google Scholar 

  75. Farah MH (2007) RNAi silencing in mouse models of neurodegenerative diseases. Curr Drug Deliv 4:161–167

    Article  PubMed  CAS  Google Scholar 

  76. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816–820

    Article  PubMed  CAS  Google Scholar 

  77. Mummery-Widmer JL, Yamazaki M, Stoeger T, Novatchkova M, Bhalerao S, Chen D, Dietzl G, Dickson BJ, Knoblich JA (2009) Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458:987–992

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes Rde M, Gruber S, Puc U, Ebersberger I, Zoranovic T, Neely GG, von Haeseler A, Ferrandon D, Penninger JM (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325:340–343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. http://flybase.bio.indiana.edu

  80. Harpavat S, Cepko CL (2006) RCAS-RNAi: a loss-of-function method for the developing chick retina. BMC Dev Biol 6:2

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sandy P, Ventura A, Jacks T (2005) Mammalian RNAi: a practical guide. Biotechniques 39:215–224

    Article  PubMed  CAS  Google Scholar 

  82. Lee SK, Kumar P (2009) Conditional RNAi: towards a silent gene therapy. Adv Drug Deliv Rev 61:650–664

    Article  PubMed  CAS  Google Scholar 

  83. Cazzin C, Ring CJ (2010) Recent advances in the manipulation of murine gene expression and its utility for the study of human neurological disease. Biochim Biophys Acta 1802:796–807

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by FEDER (European regional development fund), Ministerio de Ciencia e Innovacion (SAF2010-20008 and Consolider-Ingenio CSD2007-00020), and Junta de Castilla y Leon (SA112A12-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. Bolaños .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fernandez-Fernandez, S., Bolaños, J.P. (2014). RNA Interference as a Tool to Selectively Down-Modulate Protein Function. In: Hirrlinger, J., Waagepetersen, H. (eds) Brain Energy Metabolism. Neuromethods, vol 90. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1059-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1059-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1058-8

  • Online ISBN: 978-1-4939-1059-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics