Skip to main content

Machine Learning for In Silico ADMET Prediction

  • Protocol
  • First Online:
Book cover Artificial Intelligence in Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2390))

Abstract

ADMET (absorption, distribution, metabolism, excretion, and toxicity) describes a drug molecule’s pharmacokinetics and pharmacodynamics properties. ADMET profile of a bioactive compound can impact its efficacy and safety. Moreover, efficacy and safety are considered some of the major causes of clinical attrition in the development of new chemical entities. In past decades, various machine learning or quantitative structure–activity relationship (QSAR) methods have been successfully integrated in the modeling of ADMET. Recent advances have been made in the collection of data and the development of various in silico methods to assess and predict ADMET of bioactive compounds in the early stages of drug discovery and development process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao H, Shanmugasundaram V, Lee P (2002) Estimation of aqueous solubility of organic compounds with QSPR approach. Pharm Res 19:497–503

    Article  CAS  Google Scholar 

  2. Gao H, Steyn SJ, Chang G, Lin J (2010) Assessment of in silico models for fraction of unbound drug in human liver microsomes. Expert Opin Drug Metab Toxicol 6:533–542. https://doi.org/10.1517/17425251003671022

    Article  CAS  PubMed  Google Scholar 

  3. Gao H, Yao L, Mathieu HW et al (2008) In silico modeling of nonspecific binding to human liver microsomes. Drug Metab Dispos 36:2130–2135. https://doi.org/10.1124/dmd.107.020131

    Article  CAS  PubMed  Google Scholar 

  4. Lee PH, Cucurull-Sanchez L, Lu J, Du YJ (2007) Development of in silico models for human liver microsomal stability. J Comput Aided Mol Des 21:665–673. https://doi.org/10.1007/s10822-007-9124-0

    Article  CAS  PubMed  Google Scholar 

  5. Stoner C, Troutman M, Gao H et al (2006) Moving in silico screening into practice: a minimalist approach to guide permeability screening!! Lett Drug Des Discov 3:575–581. https://doi.org/10.2174/157018006778194736

    Article  CAS  Google Scholar 

  6. Alqahtani S (2017) In silico ADME-Tox modeling: progress and prospects. Expert Opin Drug Metab Toxicol 13:1147–1158. https://doi.org/10.1080/17425255.2017.1389897

    Article  CAS  PubMed  Google Scholar 

  7. Kearnes S, Goldman B, Pande V (2016) Modeling Industrial ADMET Data with Multitask Networks arXiv 1606.08793

    Google Scholar 

  8. Korotcov A, Tkachenko V, Russo DP, Ekins S (2017) Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery datasets. Mol Pharm 14(12):4462–4475. https://doi.org/10.1021/acs.molpharmaceut.7b00578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inform 35:3–14. https://doi.org/10.1002/minf.201501008

    Article  CAS  PubMed  Google Scholar 

  10. Ma J, Sheridan RP, Liaw A et al (2015) Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55:263–274. https://doi.org/10.1021/ci500747n

    Article  CAS  PubMed  Google Scholar 

  11. Xu Y, Ma J, Liaw A et al (2017) Demystifying multitask deep neural networks for quantitative structure-activity relationships. J Chem Inf Model 57:2490–2504. https://doi.org/10.1021/acs.jcim.7b00087

    Article  CAS  PubMed  Google Scholar 

  12. Kearnes S, McCloskey K, Berndl M et al (2016) Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des 30(8):595–608. https://doi.org/10.1007/s10822-016-9938-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramsundar B, Liu B, Wu Z et al (2017) Is multitask deep learning practical for pharma? J Chem Inf model 57(8):2068–2076. https://doi.org/10.1021/acs.jcim.7b00146

    Article  CAS  PubMed  Google Scholar 

  14. Liu K, Sun X, Jia L et al (2018) Chemi-net: a graph convolutional network for accurate drug property prediction. Int J Mol Sci 20(14):3389

    Article  Google Scholar 

  15. Dalby A, Nourse JG, Hounshell WD et al (1992) Description of several chemical structure file formats used by computer programs developed at molecular design limited. J Chem Inf Comput Sci 32:244–255. https://doi.org/10.1021/ci00007a012

    Article  CAS  Google Scholar 

  16. Ran Y, He Y, Yang G et al (2002) Estimation of aqueous solubility of organic compounds by using the general solubility equation. Chemosphere 48:487–509

    Article  CAS  Google Scholar 

  17. Mahadevan B, Snyder RD, Waters MD et al (2011) Genetic toxicology in the 21st century: reflections and future directions. Environ Mol Mutagen 52:339–354. https://doi.org/10.1002/em.20653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kier LB, Hall LH (1999) Molecular structure description: the Electrotopological state. Academic Press, San Diego

    Google Scholar 

  19. Kier LB (1989) An index of flexibility from molecular shape descriptors. Prog Clin Biol Res 291:105–109

    CAS  PubMed  Google Scholar 

  20. Kier LB (1987) Indexes of molecular shape from chemical graphs. Med Res Rev 7:417–440. https://doi.org/10.1002/med.2610070404

    Article  CAS  PubMed  Google Scholar 

  21. Quinlan JR (1992) Learning with continuous classes. Aust Joint Conf Artif Intell 92:343–348

    Google Scholar 

  22. Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106. https://doi.org/10.1007/bf00116251

    Article  Google Scholar 

  23. Quinlan JR (1993) Combining instance-based and model-based learning. In: Machine learning proceedings. Amherst, New York, pp 236–243

    Google Scholar 

  24. Ruefenacht B, Liknes G, Lister AJ, Wendt D (2008) Evaluation of open source data mining software packages. 1–13

    Google Scholar 

  25. Zhou J, Li E, Wei H et al (2019) Random forests and cubist algorithms for predicting shear strengths of rockfill materials. Appl Sci 9:1–16. https://doi.org/10.3390/app9081621

    Article  Google Scholar 

  26. Gao H, Yao L, Mathieu H, Zhang Y, Maurer T, Troutman MD, Scott DO, Ruggeri RB, Lin J (2008) In silico modeling of nonspecific binding to human liver microsomes. Drug Metab Dispos 36:2130–2135

    Article  CAS  Google Scholar 

  27. Walton JT (2008) Subpixel urban land cover estimation: comparing cubist, random forests, and support vector regression. Photogramm Eng Remote Sensing 74:1213–1222. https://doi.org/10.14358/PERS.74.10.1213

    Article  Google Scholar 

  28. Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28:1–26. https://doi.org/10.18637/jss.v028.i05

    Article  Google Scholar 

  29. RuleQuest (2019) An Overview of Cubist. https://www.rulequest.com/cubist-win.html

  30. Ekins S (2016) The next era: deep learning in pharmaceutical research. Pharm Res 33:2594–2603. https://doi.org/10.1007/s11095-016-2029-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen H, Engkvist O, Wang Y et al (2018) The rise of deep learning in drug discovery. Drug Discov Today 23(6):1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039

    Article  PubMed  Google Scholar 

  32. Liu K, Sun X, Jia L et al (2019) Chemi-net: a molecular graph convolutional network for accurate drug property prediction. Int J Mol Sci 20:3389. https://doi.org/10.3390/ijms20143389

    Article  CAS  PubMed Central  Google Scholar 

  33. Mauri A, Consonni V, Pavan M, Todeschini R (2006) DRAGON software: an easy approach to molecular descriptor calculations. Match 56:237–248

    CAS  Google Scholar 

  34. Landrum G (2006) RDKit: open-source cheminformatics

    Google Scholar 

  35. Wu Z, Ramsundar B, Feinberg EN et al (2018) MoleculeNet: a benchmark for molecular machine learning. Chem Sci 9:513–530. https://doi.org/10.1039/c7sc02664a

    Article  CAS  PubMed  Google Scholar 

  36. Yang K, Swanson K, Jin W et al (2019) Analyzing learned molecular representations for property prediction. J Chem Inf Model 59:13. https://doi.org/10.1021/acs.jcim.9b00237

    Article  CAS  Google Scholar 

  37. Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd international conference on learning representations, ICLR 2015 - conference track proceedings. International conference on learning representations, ICLR

    Google Scholar 

  38. Bryan MC, Hein CD, Gao H et al (2013) Disubstituted 1-Aryl-4-Aminopiperidine library synthesis using computational drug design and high-throughput batch and flow technologies. ACS Comb Sci 15:503–511. https://doi.org/10.1021/co400078r

    Article  CAS  PubMed  Google Scholar 

  39. Gurjar AS, Darekar MN, Yeong KY, Ooi L (2018) In silico studies, synthesis and pharmacological evaluation to explore multi-targeted approach for imidazole analogues as potential cholinesterase inhibitors with neuroprotective role for Alzheimer’s disease. Bioorg Med Chem 26(8):1511–1522. https://doi.org/10.1016/j.bmc.2018.01.029

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jia, L., Gao, H. (2022). Machine Learning for In Silico ADMET Prediction. In: Heifetz, A. (eds) Artificial Intelligence in Drug Design. Methods in Molecular Biology, vol 2390. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1787-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1787-8_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1786-1

  • Online ISBN: 978-1-0716-1787-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics