Skip to main content

Mass Spectrometry–Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling

  • Protocol
  • First Online:
Book cover Plant Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2363))

Abstract

Mitochondria are central hubs of redox biochemistry in the cell. An important role of mitochondrial carbon metabolism is to oxidize respiratory substrates and to pass the electrons down the mitochondrial electron transport chain to reduce oxygen and to drive oxidative phosphorylation. During respiration, reactive oxygen species are produced as a side reaction, some of which in turn oxidize cysteine thiols in proteins. Hence, the redox status of cysteine-containing mitochondrial proteins has to be controlled by the mitochondrial glutathione and thioredoxin systems, which draw electrons from metabolically derived NADPH. The redox status of mitochondrial cysteines can undergo fast transitions depending on the metabolic status of the cell, as for instance at early seed germination. Here, we describe a state-of-the-art method to quantify redox state of protein cysteines in isolated Arabidopsis seedling mitochondria of controlled metabolic and respiratory state by MS2-based redox proteomics using the isobaric thiol labeling reagent Iodoacetyl Tandem Mass Tag™ (iodoTMT). The procedure is also applicable to isolated mitochondria of other plant and nonplant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Day DA, Millar AH, Whelan J (2004) Plant mitochondria: from genome to function. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  2. Muller M, Mentel M, van Hellemond JJ et al (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495. https://doi.org/10.1128/MMBR.05024-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sweetlove LJ, Beard KFM, Nunes-Nesi A et al (2010) Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15:462–470. https://doi.org/10.1016/j.tplants.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  4. Friso G, van Wijk KJ (2015) Posttranslational protein modifications in plant metabolism. Plant Physiol 169:1469–1487. https://doi.org/10.1104/pp.15.01378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Møller IM, Igamberdiev AU, Bykova NV et al (2020) Matrix redox physiology governs the regulation of plant mitochondrial metabolism through posttranslational protein modifications. Plant Cell 32:573–594. https://doi.org/10.1105/tpc.19.00535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Millar AH, Sweetlove LJ, Giegé P, Leaver CJ (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol 127:1711–1727. https://doi.org/10.1104/pp.010387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sweetlove LJ, Heazlewood JL, Herald V et al (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904. https://doi.org/10.1046/j.1365-313X.2002.01474.x

    Article  CAS  PubMed  Google Scholar 

  8. Heazlewood JL, Howell KA, Whelan J, Millar AH (2003) Towards an analysis of the rice mitochondrial proteome. Plant Physiol 132:230–242. https://doi.org/10.1104/pp.102.018986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Braun H-P, Millar AH (2004) Proteome analyses for characterization of plant mitochondria. In: Day DA, Millar AH, Whelan J (eds) Plant mitochondria: from genome to function. Springer Netherlands, Dordrecht, pp 143–162

    Chapter  Google Scholar 

  10. Salvato F, Havelund JF, Chen M et al (2014) The potato tuber mitochondrial proteome. Plant Physiol 164:637–653. https://doi.org/10.1104/pp.113.229054

    Article  CAS  PubMed  Google Scholar 

  11. Senkler J, Senkler M, Eubel H et al (2017) The mitochondrial complexome of Arabidopsis thaliana. Plant J 89:1079–1092. https://doi.org/10.1111/tpj.13448

    Article  CAS  PubMed  Google Scholar 

  12. Fuchs P, Rugen N, Carrie C et al (2020) Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. Plant J 101:420–441. https://doi.org/10.1111/tpj.14534

    Article  CAS  PubMed  Google Scholar 

  13. Huang S, Li L, Petereit J, Millar AH (2020) Protein turnover rates in plant mitochondria. Mitochondrion 53:57–65. https://doi.org/10.1016/j.mito.2020.04.011

    Article  CAS  PubMed  Google Scholar 

  14. Rubin PM, Randall DD (1977) Regulation of plant pyruvate dehydrogenase complex by phosphorylation. Plant Physiol 60:34–39. https://doi.org/10.1104/pp.60.1.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. König A-C, Hartl M, Boersema PJ et al (2014) The mitochondrial lysine acetylome of Arabidopsis. Mitochondrion 19:252–260. https://doi.org/10.1016/j.mito.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  16. König A-C, Hartl M, Pham PA et al (2014) The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism. Plant Physiol 164:1401–1414. https://doi.org/10.1104/pp.113.232496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smakowska E, Blaszczyk RS, Czarna M et al (2016) Lack of FTSH4 protease affects protein carbonylation, mitochondrial morphology and phospholipid content in mitochondria of Arabidopsis: new insights into a complex interplay. Plant Physiol 171(4):2516–2535. https://doi.org/10.1104/pp.16.00370

  18. Havelund JF, Thelen JJ, Møller IM (2013) Biochemistry, proteomics, and phosphoproteomics of plant mitochondria from non-photosynthetic cells. Front Plant Sci 4:51. https://doi.org/10.3389/fpls.2013.00051

    Article  PubMed  PubMed Central  Google Scholar 

  19. Daloso DM, Müller K, Obata T et al (2015) Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc Natl Acad Sci U S A 112:E1392–E1400. https://doi.org/10.1073/pnas.1424840112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17:1232–1239. https://doi.org/10.1093/oxfordjournals.molbev.a026406

    Article  CAS  PubMed  Google Scholar 

  21. Marino SM, Gladyshev VN (2010) Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol 404:902–916. https://doi.org/10.1016/j.jmb.2010.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paulsen CE, Carroll KS (2013) Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113:4633–4679. https://doi.org/10.1021/cr300163e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157. https://doi.org/10.1016/j.freeradbiomed.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  24. Handy DE, Loscalzo J (2012) Redox regulation of mitochondrial function. Antioxid Redox Signal 16:1323–1367. https://doi.org/10.1089/ars.2011.4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li LZ (2012) Imaging mitochondrial redox potential and its possible link to tumor metastatic potential. J Bioenerg Biomembr 44:645–653. https://doi.org/10.1007/s10863-012-9469-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Requejo R, Hurd TR, Costa NJ, Murphy MP (2010) Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage: protein thiols. FEBS J 277:1465–1480. https://doi.org/10.1111/j.1742-4658.2010.07576.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mailloux RJ (2019) Cysteine switches and the regulation of mitochondrial bioenergetics and ROS production. In: Urbani A, Babu M (eds) Mitochondria in health and in sickness. Springer Singapore, Singapore, pp 197–216

    Chapter  Google Scholar 

  28. Bak DW, Pizzagalli MD, Weerapana E (2017) Identifying functional cysteine residues in the mitochondria. ACS Chem Biol 12:947–957. https://doi.org/10.1021/acschembio.6b01074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nietzel T, Mostertz J, Hochgräfe F, Schwarzländer M (2017) Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion 33:72–83. https://doi.org/10.1016/j.mito.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  30. Schwarzländer M, Finkemeier I (2013) Mitochondrial energy and redox signaling in plants. Antioxid Redox Signal 18:2122–2144. https://doi.org/10.1089/ars.2012.5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. García-Santamarina S, Boronat S, Hidalgo E (2014) Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction. Biochemistry 53:2560–2580. https://doi.org/10.1021/bi401700f

    Article  CAS  PubMed  Google Scholar 

  32. García-Santamarina S, Boronat S, Domènech A et al (2014) Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry. Nat Protoc 9:1131–1145. https://doi.org/10.1038/nprot.2014.065

    Article  CAS  PubMed  Google Scholar 

  33. Iglesias-Baena I, Barranco-Medina S, Sevilla F, Lázaro J-J (2011) The dual-targeted plant sulfiredoxin retroreduces the sulfinic form of atypical mitochondrial peroxiredoxin. Plant Physiol 155:944–955. https://doi.org/10.1104/pp.110.166504

    Article  CAS  PubMed  Google Scholar 

  34. Iglesias-Baena I, Barranco-Medina S, Lázaro-Payo A et al (2010) Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin. J Exp Bot 61:1509–1521. https://doi.org/10.1093/jxb/erq016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lamotte O, Bertoldo JB, Besson-Bard A et al (2015) Protein S-nitrosylation: specificity and identification strategies in plants. Front Chem 2:114. https://doi.org/10.3389/fchem.2014.00114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Menger KE, James AM, Cochemé HM et al (2015) Fasting, but not aging, dramatically alters the redox status of cysteine residues on proteins in Drosophila melanogaster. Cell Rep 11:1856–1865. https://doi.org/10.1016/j.celrep.2015.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leichert LI, Gehrke F, Gudiseva HV et al (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 105:8197–8202. https://doi.org/10.1073/pnas.0707723105

    Article  PubMed  PubMed Central  Google Scholar 

  38. Waszczak C, Akter S, Eeckhout D et al (2014) Sulfenome mining in Arabidopsis thaliana. Proc Natl Acad Sci U S A 111:11545–11550. https://doi.org/10.1073/pnas.1411607111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang J, Willems P, Wei B et al (2019) Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Proc Natl Acad Sci U S A 116:21256–21261. https://doi.org/10.1073/pnas.1906768116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang J, Carroll KS, Liebler DC (2016) The expanding landscape of the thiol redox proteome. Mol Cell Proteomics 15:1–11. https://doi.org/10.1074/mcp.O115.056051

    Article  CAS  PubMed  Google Scholar 

  41. Xie K, Bunse C, Marcus K, Leichert LI (2019) Quantifying changes in the bacterial thiol redox proteome during host-pathogen interaction. Redox Biol 21:101087. https://doi.org/10.1016/j.redox.2018.101087

    Article  CAS  PubMed  Google Scholar 

  42. McConnell EW, Berg P, Westlake TJ et al (2019) Proteome-wide analysis of cysteine reactivity during effector-triggered immunity. Plant Physiol 179:1248–1264. https://doi.org/10.1104/pp.18.01194

    Article  CAS  PubMed  Google Scholar 

  43. Hurd TR, Prime TA, Harbour ME et al (2007) Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis: implications for mitochondrial redox signaling. J Biol Chem 282:22040–22051. https://doi.org/10.1074/jbc.M703591200

    Article  CAS  PubMed  Google Scholar 

  44. Murray CI, Uhrigshardt H, O’Meally RN et al (2012) Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. Mol Cell Proteomics 11:M111.013441. https://doi.org/10.1074/mcp.M111.013441

    Article  CAS  PubMed  Google Scholar 

  45. Qu Z, Meng F, Bomgarden RD et al (2014) Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents. J Proteome Res 13:3200–3211. https://doi.org/10.1021/pr401179v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thompson A, Schäfer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904. https://doi.org/10.1021/ac0262560

    Article  CAS  PubMed  Google Scholar 

  47. Nietzel T, Mostertz J, Ruberti C et al (2020) Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proc Natl Acad Sci U S A 117:741–751. https://doi.org/10.1073/pnas.1910501117

    Article  CAS  PubMed  Google Scholar 

  48. Schwacke R, Ponce-Soto GY, Krause K et al (2019) MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant 12:879–892. https://doi.org/10.1016/j.molp.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  49. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

  50. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Thomas Nietzel and Falko Hochgräfe for their previous work on the iodoTMT method development, on which aspects of the presented method were optimized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Finkemeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Giese, J., Eirich, J., Post, F., Schwarzländer, M., Finkemeier, I. (2022). Mass Spectrometry–Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling. In: Van Aken, O., Rasmusson, A.G. (eds) Plant Mitochondria. Methods in Molecular Biology, vol 2363. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1653-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1653-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1652-9

  • Online ISBN: 978-1-0716-1653-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics