Skip to main content

A Practical Protocol for Genome-Scale Metabolic Reconstructions

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Genome-scale metabolic reconstructions (GEMREs) are organism-specific knowledge bases. Such reconstructions are developed systematically through the integration of genome annotation, omic data sets, and biological knowledge available for the target species at the time of reconstruction. They can be further transformed into computational models enabling the quantitative prediction of phenotypic states in terms of fluxes through individual reactions. In addition, they can be used as unique computational scaffolds towards the integration and mechanistic contextualization of omic data. As a result, GEMREs are attracting great interest, and the scope of their applications keeps growing. However, the key reconstruction process is time-consuming, and it is extremely sensitive to the adherence to accepted quality standards and protocols. Therefore, high-quality reconstruction protocols reducing the time and effort involved in the reconstruction are desirable. This chapter provides a step-by-step protocol for genome-scale metabolic reconstruction accessible to nonexperts in the field. The protocol was applied to reconstruct the metabolic network of the aromatic hydrocarbon-degrading bacterium Pseudomonas putida F1 using the reconstruction of the related strain Pseudomonas putida KT2440 as template. The final model was further used to compare, from a mechanistic point of view, some of the metabolic capabilities of these two interesting environmental bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Feist A, Herrgard M, Thiele I, Reed J, Palsson B (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143

    Article  CAS  PubMed  Google Scholar 

  3. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hyduke D, Schellenberger J, Que R, Fleming R, Thiele I, Orth J, Feist A, Zielinski D, Bordbar A, Lewis N et al (2011) COBRA Toolbox 2.0

    Google Scholar 

  5. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10(4):291–305

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Österlund T, Nookaew I, Nielsen J (2012) Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv 30(5):979–988

    Article  PubMed  Google Scholar 

  7. Bordbar A, Palsson BO (2012) Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J Intern Med 271(2):131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23(4):617–623

    Article  CAS  PubMed  Google Scholar 

  9. McCloskey D, Palsson BO, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9:661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28(9):977–982

    Article  CAS  PubMed  Google Scholar 

  11. Vitkin E, Shlomi T (2012) MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome Biol 13(11):R111

    Article  PubMed  PubMed Central  Google Scholar 

  12. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J (2013) The RAVEN Toolbox and its Use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9(3):e1002980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liao Y-C, Tsai M-H, Chen F-C, Hsiung CA (2012) GEMSiRV: a software platform for GEnome-scale metabolic model simulation, reconstruction and visualization. Bioinformatics 28(13):1752–1758

    Article  CAS  PubMed  Google Scholar 

  14. Monk J, Nogales J, Palsson BO (2014) Optimizing genome-scale network reconstructions. Nat Biotechnol 32(5):447–452

    Article  CAS  PubMed  Google Scholar 

  15. Haggart CR, Bartell JA, Saucerman JJ, Papin JA (2011) Chapter twenty-one - whole-genome metabolic network reconstruction and constraint-based modeling. In: Daniel Jameson MV, Hans VW (eds) Methods in enzymology, vol 500. Academic, San Diego, pp 411–433

    Google Scholar 

  16. Santos F, Boele J, Teusink B (2011) Chapter twenty-four - a practical guide to genome-scale metabolic models and their analysis. In: Daniel Jameson MV, Hans VW (eds) Methods in enzymology, vol 500. Academic, San Diego, pp 509–532

    Google Scholar 

  17. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox. Nat Protoc 2(3):727–738

    Article  CAS  PubMed  Google Scholar 

  18. Nogales J, Palsson B, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2(1):79

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schellenberger J, Park J, Conrad T, Palsson B (2010) BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11(1):213

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eaton RW (1997) p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 179(10):3171–3180

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zylstra GJ, Gibson DT (1989) Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem 264(25):14940–14946

    CAS  PubMed  Google Scholar 

  23. Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35(2):299–323

    Article  CAS  PubMed  Google Scholar 

  24. Jiménez JI, Nogales J, García JL, Díaz E (2010) A genomic view of the catabolism of aromatic compounds in Pseudomonas. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1297–1325

    Chapter  Google Scholar 

  25. Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13(3):344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rühl J, Hein E-M, Hayen H, Schmid A, Blank LM (2012) The glycerophospholipid inventory of Pseudomonas putida is conserved between strains and enables growth condition-related alterations. J Microbial Biotechnol 5(1):45–58

    Article  Google Scholar 

  27. Ebert BE, Kurth F, Grund M, Blank LM, Schmid A (2011) Response of Pseudomonas putida KT2440 to Increased NADH and ATP Demand. Appl Environ Microbiol 77(18):6597–6605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. del Castillo T, Ramos JL, Rodríguez-Herva JJ, Fuhrer T, Sauer U, Duque E (2007) Convergent Peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189(14):5142–5152

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reed J, Vo T, Schilling C, Palsson B (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the SYNPOL (FP7-KBBE 311815; http://www.synpol.org/) UE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Nogales .

Editor information

Editors and Affiliations

Supplementary Information

Supplementary Information

Supplementary file 1. Metabolic reconstruction of P. putida KT2440 (iJN746) in xml format.

Accessible through https://www.dropbox.com/s/7u8robuq63ikknx/iJN746_flux.xml

Supplementary file 2. Metabolic reconstruction of P. putida F1 (iJN739) in xml format.

Accessible through https://www.dropbox.com/s/w987b4p3ge6v31u/iJN739.xml

Supplementary Table 1. Excel sheet including iJN739 in xls format, details and examples of the addition of reactions during the protocol and details for BOF formulation.

Accessible through https://www.dropbox.com/s/wrfma7c8hh7pfaa/TableS1.xls

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Nogales, J. (2014). A Practical Protocol for Genome-Scale Metabolic Reconstructions. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2014_12

Download citation

  • DOI: https://doi.org/10.1007/8623_2014_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50433-8

  • Online ISBN: 978-3-662-50435-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics