Skip to main content

Electron Microscopy of the Brains of Drosophila Models of Alzheimer’s Diseases

  • Protocol
  • First Online:
  • 930 Accesses

Part of the book series: Neuromethods ((NM,volume 115))

Abstract

The fruit fly Drosophila is widely used as a genetic model organism and recently emerged as a powerful system in which to study human diseases. We established fly models of Alzheimer’s disease (AD) by expressing AD-associated β-amyloid peptides or microtubule-associated protein tau in the fly brain. Electron microscopy (EM) is an essential tool used to diagnose and categorize human diseases and to evaluate whether transgenic models recapitulate pathological phenotypes. We employed EM analyses to gain an understanding of the pathological effects of expressing Aβ or tau on the ultrastructure of the brain and to localize β-amyloid within subcellular organelles. These analyses revealed that several critical pathologies observed in the brains of patients with AD are recapitulated in these fly models of the disease.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11(6):1114–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fortini ME, Skupski MP, Boguski MS, Hariharan IK (2000) A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol 150(2):F23–F30

    Article  CAS  PubMed  Google Scholar 

  3. Ambegaokar SS, Roy B, Jackson GR (2010) Neurodegenerative models in Drosophila: polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis. Neurobiol Dis 40(1):29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Newman T, Sinadinos C, Johnston A, Sealey M, Mudher A (2011) Using Drosophila models of neurodegenerative diseases for drug discovery. Exp Opin Drug Discov 6(2):129–140

    Article  CAS  Google Scholar 

  5. Iijima-Ando K, Iijima K (2010) Transgenic Drosophila models of Alzheimer’s disease and tauopathies. Brain Struct Funct 214(2–3):245–262

    Article  CAS  PubMed  Google Scholar 

  6. Cummings JL (2003) The neuropsychiatry of Alzheimer’s disease and other dementias. Martin Dunitz, London

    Book  Google Scholar 

  7. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791

    Article  CAS  PubMed  Google Scholar 

  8. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  9. Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122(3):1131–1135

    Article  CAS  PubMed  Google Scholar 

  10. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82(12):4245–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251(4994):675–678

    Article  CAS  PubMed  Google Scholar 

  12. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  PubMed  Google Scholar 

  13. Iijima K, Liu HP, Chiang AS, Hearn SA, Konsolaki M, Zhong Y (2004) Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer’s disease. Proc Natl Acad Sci U S A 101(17):6623–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iijima K, Chiang HC, Hearn SA, Hakker I, Gatt A, Shenton C, Granger L, Leung A, Iijima-Ando K, Zhong Y (2008) Abeta42 mutants with different aggregation profiles induce distinct pathologies in Drosophila. PLoS One 3(2):e1703

    Article  PubMed  PubMed Central  Google Scholar 

  15. Finelli A, Kelkar A, Song HJ, Yang H, Konsolaki M (2004) A model for studying Alzheimer’s Abeta42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci 26(3):365–375

    Article  CAS  PubMed  Google Scholar 

  16. Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, Feany MB (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293(5530):711–714

    Article  CAS  PubMed  Google Scholar 

  17. Jackson GR, Wiedau-Pazos M, Sang T-K, Wagle N, Brown CA, Massachi S, Geschwind DH (2002) Human wild-type Tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34(4):509–519

    Article  CAS  PubMed  Google Scholar 

  18. Iijima-Ando K, Sekiya M, Maruko-Otake A, Ohtake Y, Suzuki E, Lu B, Iijima KM (2012) Loss of axonal mitochondria promotes Tau-mediated neurodegeneration and Alzheimer’s disease-related Tau phosphorylation via PAR-1. PLoS Genet 8(8):e1002918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chee FC, Mudher A, Cuttle MF, Newman TA, MacKay D, Lovestone S, Shepherd D (2005) Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiol Dis 20(3):918–928

    Article  CAS  PubMed  Google Scholar 

  20. Nishimura I, Yang Y, Lu B (2004) PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 116(5):671–682

    Article  CAS  PubMed  Google Scholar 

  21. Milyaev N, Osumi-Sutherland D, Reeve S, Burton N, Baldock RA, Armstrong JD (2012) The Virtual Fly Brain browser and query interface. Bioinformatics 28(3):411–415

    Article  CAS  PubMed  Google Scholar 

  22. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    CAS  PubMed  Google Scholar 

  23. Gibson GE, Nielsen P, Sherman KA, Blass JP (1987) Diminished mitogen-induced calcium uptake by lymphocytes from Alzheimer patients. Biol Psychiatry 22(9):1079–1086

    Article  CAS  PubMed  Google Scholar 

  24. Zempel H, Mandelkow E (2014) Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 37(12):721–732

    Article  CAS  PubMed  Google Scholar 

  25. Benilova I, Karran E, De Strooper B (2012) The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357

    Article  CAS  PubMed  Google Scholar 

  26. Palade GE (1952) A study of fixation for electron microscopy. J Exp Med 95(3):285–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hernandez-Moran H (1957) Electron microscopy of nervous tissue. Metabolism of the nervous system. Pergamon, London

    Google Scholar 

  28. Bendayan M, Zollinger M (1983) Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J Histochem Cytochem 31(1):101–109

    Article  CAS  PubMed  Google Scholar 

  29. Hearn SA, Silver MM, Sholdice JA (1985) Immunoelectron microscopic labeling of immunoglobulin in plasma cells after osmium fixation and epoxy embedding. J Histochem Cytochem 33(12):1212–1218

    Article  CAS  PubMed  Google Scholar 

  30. Yamashita S, Okada Y (2014) Heat-induced antigen retrieval in conventionally processed epon-embedded specimens: procedures and mechanisms. J Histochem Cytochem 62(8):584–597

    Article  PubMed  Google Scholar 

  31. Mathiisen TM, Nagelhus EA, Jouleh B (2006) Postembedding immunogold cytochemistry of membrane molecules and amino acid transmitters in the central nervous system. Neuroanatomical tract-tracing 3. Springer Press eBook, New York, pp 72–108

    Google Scholar 

  32. Merighi A, Polak JM, Fumagalli G, Theodosis DT (1989) Ultrastructural localization of neuropeptides and GABA in rat dorsal horn: a comparison of different immunogold labeling techniques. J Histochem Cytochem 37(4):529–540

    Article  CAS  PubMed  Google Scholar 

  33. Zago W, Schroeter S, Guido T, Khan K, Seubert P, Yednock T, Schenk D, Gregg KM, Games D, Bard F, Kinney GG (2013) Vascular alterations in PDAPP mice after anti-Abeta immunotherapy: implications for amyloid-related imaging abnormalities. Alzheimers Dement 9(5 Suppl):S105–S115

    Article  PubMed  Google Scholar 

  34. Amiry-Moghaddam M, Ottersen OP (2013) Immunogold cytochemistry in neuroscience. Nat Neurosci 16(7):798–804

    Article  CAS  PubMed  Google Scholar 

  35. Van Dorpe J, Smeijers L, Dewachter I, Nuyens D, Spittaels K, Van Den Haute C, Mercken M, Moechars D, Laenen I, Kuiperi C, Bruynseels K, Tesseur I, Loos R, Vanderstichele H, Checler F, Sciot R, Van Leuven F (2000) Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol 157(4):1283–1298

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yu WH, Kumar A, Peterhoff C, Shapiro KL, Uchiyama Y, Lamb BT, Cuervo AM, Nixon RA (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int J Biochem Cell Biol 36(12):2531–2540

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the National Institute of Health [R01AG032279] and [U01AG046170] to K.A. and K.M.I., the Alzheimer’s Association NIRG-10-173189 to K.A. and NIRG-08-91985 to K.M.I., the start-up funds from Tokyo Metropolitan University (to K.A.), Takeda Science Foundation, Japan (to K.M.I.), and Research Grant for Longevity Science 25-27, Japan (to K.M.I.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kanae Ando or Koichi M. Iijima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ando, K., Hearn, S., Suzuki, E., Maruko-Otake, A., Sekiya, M., Iijima, K.M. (2015). Electron Microscopy of the Brains of Drosophila Models of Alzheimer’s Diseases. In: Van Bockstaele, E. (eds) Transmission Electron Microscopy Methods for Understanding the Brain. Neuromethods, vol 115. Humana Press, New York, NY. https://doi.org/10.1007/7657_2015_75

Download citation

  • DOI: https://doi.org/10.1007/7657_2015_75

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3638-0

  • Online ISBN: 978-1-4939-3640-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics