Skip to main content

Metabolism and Drug–Drug Interaction in Pregnant Mother/Placenta/Fetus

  • Protocol
  • First Online:
Developmental and Reproductive Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The pregnant woman and the presence of the fetus pose many challenges for proper and effective drug administration. The variety of physiological changes that takes place during pregnancy coupled together with the variety in the responses of the cytochrome P450 enzymes in terms of induction and inhibition as well as the presence of polymorphic forms which may be present and the influence of the drug transporters make predicting the pharmacokinetics and pharmacodynamics of any given drug difficult. Treatment and dosage during pregnancy and lactation with drugs such as antibiotics, antivirals, antiepileptic, anticancer, and antipsychotic medications all need to be evaluated carefully to minimize the occurrence of adverse effects due to possible excessive exposure or a lack of efficacy due to possible underexposure. In addition, as more literature data becomes available about the role of efflux transporters such as Pgp, BCRP, and MRP3 and uptake transporters OCT3 and OCTN1 in pregnancy and in the fetus with prescribed medications this information will need to be used in the evaluation. Therefore, for drugs with a narrow therapeutic window or those with marked pharmacologic or toxicological outcomes that are also cleared predominantly by a single CYP450 or handled by a single transporter, the need for systemic monitoring of plasma concentration to monitor exposure is warranted, at least during the initial days of starting a medication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glover DD, Amonkar M, Rybeck BF, Tracy TS (2003) Prescription, over-the-counter, and herbal medicine use in a rural, obstetric population. Am J Obstet Gynecol 188:1039–1045

    Article  PubMed  Google Scholar 

  2. Isoherranen N, Thummel KE (2013) Drug metabolism and transport during pregnancy: how does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab Dispos 41(2):256–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Danielson PB (2002) The cytochrome P450 super family: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 3:561–597

    Article  CAS  PubMed  Google Scholar 

  4. Guengerich FP (1994) Catalytic selectivity of human cytochrome P450 enzymes: relevance to drug metabolism and toxicity. Toxicol Lett 70:133–138

    Article  CAS  PubMed  Google Scholar 

  5. Slaughter RL, Edwards DJ (1995) Recent advances: the cytochrome P450 enzymes. Ann Pharmacother 29:619–624

    Article  CAS  PubMed  Google Scholar 

  6. Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y (2003) Impact of drug transporter studies on drug discovery and development. Pharmacol Rev 55(3):425–461

    Article  CAS  PubMed  Google Scholar 

  7. Borst P, Evers R, Kool M, Wijnholds J (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92:1295–1302

    Article  CAS  PubMed  Google Scholar 

  8. Rogers AS (1994) The role of cytochrome P450 in developmental pharmacology. J Adolesc Health 15(8):635–640

    Article  CAS  PubMed  Google Scholar 

  9. Hollenberg PF (2002) Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes drug metabolism reviews. Drug Metab Rev 34(1&2):17–35

    Article  CAS  PubMed  Google Scholar 

  10. Feghali MN, Mattison DR (2011) Clinical therapeutics in pregnancy. J Biomed Biotechnol ID 783528, 13 p

    Google Scholar 

  11. Little B (1999) Pharmacokinetics during pregnancy: evidence-based maternal dose formulation. Obstet Gynecol 93:858–868

    CAS  PubMed  Google Scholar 

  12. Frederiksen MC (2001) Physiologic changes in pregnancy and their effect on drug disposition. Semin Perinatol 5:120–123

    Article  Google Scholar 

  13. Pavek P, Ceckova M, Staud F (2009) Variation of drug kinetics in pregnancy. Curr Drug Metab 10:520–529

    Article  CAS  PubMed  Google Scholar 

  14. Mitani GM, Steinberg I, Lien EJ, Harrison EC, Elkayam U (1987) The pharmacokinetics of antiarrhythmic agents in pregnancy and lactation. Clin Pharmacokinet 12:253–291

    Article  CAS  PubMed  Google Scholar 

  15. Best B, Capparelli EV (2008) Implications of gender and pregnancy for antiretroviral drug dosing. Cur Opin HIV AIDS 3:277–282

    Article  Google Scholar 

  16. Morgan DJ (1997) Drug disposition in mother and fetus. Clin Exp Pharmacol Physiol 24:869–873

    Article  CAS  PubMed  Google Scholar 

  17. Jeong H (2010) Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes. Expert Opin Drug Metab Toxicol 6(6):689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loebstein R, Lalkin A, Koren G (1997) Pharmacokinetic changes during pregnancy and their clinical relevance. Clin Pharmacokinet 33:328–343

    Article  CAS  PubMed  Google Scholar 

  19. Krishna DR, Klotz U (1994) Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet 26:144–160

    Article  CAS  PubMed  Google Scholar 

  20. O’Shaughnessy PJ, Monteiro A, Bhattacharya S, Fowler PA (2011) Maternal smoking and fetal sex significantly affect metabolic enzyme expression in the human fetal liver. J Clin Endocrinol Metab 96(9):2851–2860

    Article  PubMed  Google Scholar 

  21. Huang SM, Temple R, Throckmorton DC, Lesko LJ (2007) Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin Pharmacol Ther 81(2):298–304

    Article  CAS  PubMed  Google Scholar 

  22. Sasaki S, Kondo T, Sata F, Saijo Y, Katoh S, Nakajima S, Ishizuka M, Fujita S, Kishi R (2006) Maternal smoking during pregnancy and genetic polymorphisms in the Ah receptor, CYP1A1 and GSTM1 affect infant birth size in Japanese subjects. Basic Sci Reprod Med 12(2):77–83

    Google Scholar 

  23. Blake MJ, Gaedigk A, Pearce RE, Bomgaars LR, Christensen ML, Stowe C, James LP, Wilson JT, Kearns GL, Leeder JS (2005) Ontogeny of dextromethorphan O- and N-demethylation in the first year of life. Clin Pharmacol Ther 81:510–516

    Article  Google Scholar 

  24. Treluyer JM, Jacqz-Aigrain E, Alvarez F, Cresteil T (1991) Expression of CYP2D6 in developing human liver. Eur J Biochem 202:583–588

    Article  CAS  PubMed  Google Scholar 

  25. Fakhoury M, Jacqz-Aigrain E (2005) Developmental pharmacogenetics. Pediatrica 16(2):28–31

    Google Scholar 

  26. Stevens JC, Marsh SA, Zaya MJ, Regina KJ, Divakaran K, Le M, Hines RN (2008) Developmental changes in human liver CYP2D6 expression. Am Soc Pharmacol ExpTher 36(8):1587–1593

    CAS  Google Scholar 

  27. Zanger UM, Turpeinen M, Klein K, Schwab M (2008) Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem 39(6):1093–1108

    Article  Google Scholar 

  28. De Wildt SN, Kearns GL, Hop WC, Murry DJ, Abdel-Rahman SM, van den Anker JN (2001) Pharmacokinetics and metabolism of intravenous midazolam in preterm infants. Clin Pharmacol Ther 70:525–531

    Article  PubMed  Google Scholar 

  29. Davis M, Simmons CJ, Dordoni B et al (1973) Induction of hepatic enzymes during normal human pregnancy. J Obstet Gynaecol Br Commonw 80:690–694

    Article  CAS  PubMed  Google Scholar 

  30. Wadelius M, Darj E, Frenne G, Rane A (1997) Induction of CYP2D6 in pregnancy. Clin Pharmacol Ther 62:400–407

    Article  CAS  PubMed  Google Scholar 

  31. Tracy TS, Venkataramanan R, Glover DD, Caritis SN (2005) Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am J Obstet Gynecol 192:633–639

    Article  CAS  PubMed  Google Scholar 

  32. Koh KH, Xie H, Yu A-M, Leong H (2011) Altered cytochrome P450 expression in mice during pregnancy. Drug Metab Dispos 39(2):165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Strickler S, Margaret A, Miller E, Linda A, Marie-Helene DS, Spielberg SP (1985) Genetic predisposition to phenytoin-induced birth defects. Lancet 2:746–749

    Article  CAS  PubMed  Google Scholar 

  34. Shanks MJ, Wiley MJ, Kubow S, Wells PG (1989) Phenytoin embryotoxicity: role of enzymatic bioactivation in a murine embryo culture model. Teratology 40:311–320

    Article  CAS  PubMed  Google Scholar 

  35. Wilffert B, Altena J, Tijink L, van Gelder M, de Jong-van den Berg L (2011) Pharmacogenetics of drug-induced birth defects: what is known so far? Pharmacogenomics 12(4):547–558

    Article  PubMed  Google Scholar 

  36. Nagai G, Ono S, Yasui-Furukori N, Nakamura A, Mihara K, Kondo T (2009) Formulations of valproate alter valproate metabolism: a single oral dose kinetic study. Ther Drug Monit 31(5):592–596

    Article  CAS  PubMed  Google Scholar 

  37. Shaffer CL, Gal P, Ransom JL, Carlos RQ, Smith MS, Davey AM, Dimaguila MA, Brown YL, Schall SA (2002) Effect of age and birth weight on indomethacin pharmacodynamics in neonates treated for patent ductus arteriosus. Crit Care Med 30:343–348

    Article  CAS  PubMed  Google Scholar 

  38. McCarver DG, Hines RN (2002) The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther 300(2):361–366

    Article  CAS  PubMed  Google Scholar 

  39. Feder HM, Osier C, Maderazo EG (1981) Chloramphenicol: a review of its use in clinical practice. Clin Infect Dis 3(3):479–491

    Article  Google Scholar 

  40. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, Lindhout D, Tytgat GN, Jansen PL, Oude Elferink RP, Chowndry NR (1995) The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med 333(18):1171–1175

    Article  CAS  PubMed  Google Scholar 

  41. Richard K, Hume R, Kaptein E, Visser TJ, Coughtrie MWH (2001) Sulfation of thyroid hormone and dopamine during human development: ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung and brain. J Clin Endocrinol Metab 86:2734–2742

    CAS  PubMed  Google Scholar 

  42. Juliano RI, Ling VA (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    Article  CAS  PubMed  Google Scholar 

  43. Klaassen CD, Aleksunes LM (2010) Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 62(1):1–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shugarts S, Benet LZ (2009) The role of transporters in the pharmacokinetics of orally administered. Pharm Res 26(9):2039–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Scherrmann JM (2009) Transporters in absorption, distribution, and elimination. Chem Biodivers 6(11):1933–1942

    Article  CAS  PubMed  Google Scholar 

  46. Vähäkangas K, Myllynen P (2009) Drug transporters in the human blood-placental barrier. Br J Pharmacol 158(3):665–678

    Article  PubMed  PubMed Central  Google Scholar 

  47. Klaassen CD, Lu H (2008) Xenobiotic transporters: ascribing function from gene knockout and mutation studies. Toxicol Sci 101:186–196

    Article  CAS  PubMed  Google Scholar 

  48. Gedeon C, Koren G (2006) Designing pregnancy centered medications: drugs which do not cross the human placenta. Placenta 27(8):861–868

    Article  CAS  PubMed  Google Scholar 

  49. Unadkat JD, Dahlin A, Vijay S (2004) Placental drug transporters. Curr Drug Metab 5(1):125–131

    Article  CAS  PubMed  Google Scholar 

  50. Vore M, Leggas M (2008) Progesterone acts via progesterone receptors A and B to regulate breast cancer resistance protein expression. Mol Pharmacol 73:613–615

    Article  CAS  PubMed  Google Scholar 

  51. Hakkola J, Pelkonen O, Pasanen M, Raunio H (1996) Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol 28:35–72

    Article  Google Scholar 

  52. Weier N, He SM, Li XT, Wang LL, Zhou SF (2008) Placental drug disposition and its clinical implications. Curr Drug Metab 9:106–121

    Article  CAS  PubMed  Google Scholar 

  53. Hakkola J, Raunio H, Purkunen R, Saarikoski S, Vähäkangas K, Pelkonen O, Edwards RJ, Boobis AR, Pasanen M (2001) Cytochrome P450 3A expression in the human fetal liver: evidence that CYP3A5 is expressed in only a limited number of fetal livers. Biol Neonate 80(3):193–201

    Article  CAS  PubMed  Google Scholar 

  54. Syme MR, Paxton JW, Keelan JA (2004) Drug transfer and metabolism by the human placenta. Clin Pharmacokinet 43(8):487–514

    Article  CAS  PubMed  Google Scholar 

  55. Stejskalova L, Pavek P (2011) The function of cytochrome P450 1A1 enzyme (CYP1A1) and aryl hydrocarbon receptor (AhR) in the placenta. Curr Pharm Biotechnol 12(5):715–730

    Article  CAS  PubMed  Google Scholar 

  56. Pasanen M (1999) The expression and regulation of drug metabolism in human placenta. Adv Drug Deliv Rev 38(3):81–97

    Article  CAS  PubMed  Google Scholar 

  57. Endres CJ, Hsiao P, Chung FS, Unadkat JD (2006) The role of transporters in drug interactions. Eur J Pharm Sci 27(5):501–517

    Article  CAS  PubMed  Google Scholar 

  58. Atkinson DE, Brice-Bennett S, D’Souza SW (2007) Antiepileptic medication during pregnancy: does fetal genotype affect outcome? Pediatr Res 62(2):120–127

    Article  PubMed  Google Scholar 

  59. Eshkoli T, Sheiner E, Ben-Zvi Z, Holcberg G (2011) Drug transport across the placenta. Curr Pharm Biotechnol 12(5):707–714

    Article  CAS  PubMed  Google Scholar 

  60. Iqbal M, Audette MC, Petropoulos S, Gibb W, Matthews SG (2012) Placental drug transporters and their role in fetal protection. Placenta 33(3):137–142

    Article  CAS  PubMed  Google Scholar 

  61. Smit JW, Huisman MT, van Tellingen O, Wiltshire HR, Schinkel AH (1999) Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J Clin Invest 104(10):1441–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11(7):1156–1166

    Google Scholar 

  63. Gilchrist SE, Alcorn J (2010) Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids. Fundam Clin Pharmacol 24(2):205–214

    CAS  PubMed  Google Scholar 

  64. Hodge LS, Tracy TS (2007) Alterations in drug disposition during pregnancy: implications for drug therapy. Expert Opin Drug Metab Toxicol 3:557–571

    Article  CAS  PubMed  Google Scholar 

  65. Tomson T, Landmark CJ, Battino D (2013) Antiepileptic drug treatment in pregnancy: changes in drug disposition and their clinical implications. Epilepsia 54(3):405–414

    Article  CAS  PubMed  Google Scholar 

  66. Pennell PB, Peng L, Newport DJ, Ritchie JC, Koganti A, Holley DK, Newman M, Stowe ZN (2008) Lamotrigine in pregnancy: clearance, therapeutic drug monitoring, and seizure frequency. Neurology 70:2130–2136

    Article  CAS  PubMed  Google Scholar 

  67. Pennell P (2005) Using current evidence in selecting antiepileptic drugs for use during pregnancy. Epilepsy Curr 5(2):45–51

    Article  PubMed  PubMed Central  Google Scholar 

  68. Morris DJ (1994) Adverse effects and drug interactions of clinical importance with antiviral drugs. Drug Saf 10(4):281–291

    Article  CAS  PubMed  Google Scholar 

  69. Rawat AK (1981) Ethanol and psychotropic drug interaction during pregnancy and lactation. Biochem Pharmacol 30(17):2457–2460

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali S. Faqi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Faqi, A.S., Holm, K.A. (2016). Metabolism and Drug–Drug Interaction in Pregnant Mother/Placenta/Fetus. In: Faqi, A. (eds) Developmental and Reproductive Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2016_64

Download citation

  • DOI: https://doi.org/10.1007/7653_2016_64

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7206-7

  • Online ISBN: 978-1-4939-7208-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics