Skip to main content

In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets

  • Protocol
  • First Online:
Book cover Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1341))

Abstract

Since the advent of pluripotent stem cells, (embryonic and induced pluripotent stem cells), applications of such pluripotent stem cells are of prime importance. Indeed, scientists are involved in studying the basic biology of pluripotent stem cells, but equal impetus is there to direct the pluripotent stem cells into multiple lineages for cell therapy applications. Scientists across the globe have been successful, to a certain extent, in obtaining cells of definitive endoderm and also pancreatic β islets by differentiating human pluripotent stem cells. Pluripotent stem cell differentiation protocols aim at mimicking in vivo embryonic development. As in vivo embryonic development is a complex process and involves interplay of multiple cytokines, the differentiation protocols also involve a stepwise use of multiple cytokines. Indeed the novel markers for pancreas organogenesis serve as the roadmaps to develop new protocols for pancreatic differentiation from pluripotent stem cells. Earliest developed protocols for pancreas differentiation involved “Nestin selection pathway,” a pathway common for both neuronal and pancreatic differentiation lead to the generation of cells that were a combination of cells from neuronal lineage. Eventually with the discovery of hierarchy of β cell transcription factors like Pdx1, Pax4, and Nkx2.2, forced expression of such transcription factors proved successful in converting a pluripotent stem cell into a β cell. Protocols developed almost half a decade ago to the recent ones rather involve stepwise differentiations involving various cytokines and could generate as high as 25 % functional insulin-positive cells in vitro. Most advanced protocols for β islet differentiations from human pluripotent stem cells focused on 3D culture conditions, which reportedly produced 60–65 % functional β islet cells. Here, we describe the protocol for differentiation of human pluripotent stem cells into functional β cells under both 2D and 3D culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  3. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  4. Ciruna B, Rossant J (2001) FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1:37–49

    Article  CAS  PubMed  Google Scholar 

  5. Hardy KM, Garriock RJ, Yatskievych TA, D’Agostino SL, Antin PB, Krieg PA (2008) Non-canonical Wnt signaling through Wnt5a/b and a novel Wnt11 gene, Wnt11b, regulates cell migration during avian gastrulation. Dev Biol 320:391–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yang X, Chrisman H, Weijer CJ (2008) PDGF signalling controls the migration of mesoderm cells during chick gastrulation by regulating N-cadherin expression. Development 135:3521–3530

    Article  CAS  PubMed  Google Scholar 

  7. Hardy KM, Yatskievych TA, Konieczka J, Bobbs AS, Antin PB (2011) FGF signalling through RAS/MAPK and PI3K pathways regulates cell movement and gene expression in the chicken primitive streak without affecting E-cadherin expression. BMC Dev Biol 11:20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Alev C, Wu Y, Kasukawa T, Jakt LM, Ueda HR, Sheng G (2010) Transcriptomic landscape of the primitive streak. Development 137:2863–2874

    Article  CAS  PubMed  Google Scholar 

  9. Stern CD (ed) (2004) Gastrulation: from cells to embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 219–232

    Google Scholar 

  10. Nakaya Y, Sheng G (2009) An amicable separation: chick’s way of doing EMT. Cell Adh Migr 3:160–163

    Article  PubMed Central  PubMed  Google Scholar 

  11. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Li X, Eswarakumar VP, Seger R, Lonai P (2000) Fibroblast growth factor (FGF) signaling through PI 3-kinase and Akt/PKB is required for embryoid body differentiation. Oncogene 19:3750–3756

    Article  CAS  PubMed  Google Scholar 

  13. Esner M, Pachernik J, Hampl A, Dvorak P (2002) Targeted disruption of fibroblast growth factor receptor-1 blocks maturation of visceral endoderm and cavitation in mouse embryoid bodies. Int J Dev Biol 46:817–825

    CAS  PubMed  Google Scholar 

  14. Ciruna BG, Schwartz L, Harpal K, Yamaguchi TP, Rossant J (1997) Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development 124:2829–2841

    CAS  PubMed  Google Scholar 

  15. Yamaguchi TP, Harpal K, Henkemeyer M, Rossant J (1994) fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 8:3032–3044

    Article  CAS  PubMed  Google Scholar 

  16. Deng C, Bedford M, Li C, Xu X, Yang X, Dunmore J, Leder P (1997) Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. Dev Biol 185:42–54

    Article  CAS  PubMed  Google Scholar 

  17. Coolen M, Sakura-Spengler T, Nicolle D, Le-Mentec C, Lallemand Y, DaSilva C, Plouhinec L, Robert B, Wincker P, Shi DL, Mazan S (2007) Evolution of axis specification mechanism in jawed vertebrates: insights from chondrichthyan. PLoS One 2:e374

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wilson SI, Rydstrom A, Trimborn K, Willert K, Nusse R, Jessell TM, Edlund T (2001) The status of Wnt signaling regulates neural and epidermal fates in the chicken embryo. Nature 411:325–330

    Article  CAS  PubMed  Google Scholar 

  19. Bain G, Kitchens D, Yao M, Huetner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357

    Article  CAS  PubMed  Google Scholar 

  20. Sharpe C, Goldstone K (2000) The control of Xenopus embryonic primary neurogenesis is mediated by retinoid signaling in the neuroectoderm. Mech Dev 9:69–80

    Article  Google Scholar 

  21. Franco PG, Paganelli AR, López SL, Carrasco AE (1999) Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis. Development 126:4257–4265

    CAS  PubMed  Google Scholar 

  22. Begemann G, Meyer A (2001) Hindbrain patterning revisited: timing effects of retinoic acid signalling. Bioessays 23:981–986

    Article  CAS  PubMed  Google Scholar 

  23. Novitch BG, Wichterle H, Jessell TM, Sockanathan S (2003) A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron 40:81–95

    Article  CAS  PubMed  Google Scholar 

  24. Tonge PD, Andrews PW (2010) Retinoic acid directs neuronal differentiation of human pluripotent stem cell lines in a non-cell-autonomous manner. Differentiation 80:20–30

    Article  CAS  PubMed  Google Scholar 

  25. Otero JJ, Fu W, Kan L, Cuadra AE, Kessler JA (2004) Beta-catenin signaling is required for neural differentiation of embryonic stem cells. Development 131:3545–3557

    Article  CAS  PubMed  Google Scholar 

  26. Trilck M, Hübner R, Frech MJ (2014) Generation and neuronal differentiation of patient-specific induced pluripotent stem cells derived from niemann-pick type C1 fibroblasts. Methods Mol Biol Dec 18 [Epub ahead of print]

    Google Scholar 

  27. Brafman DA. (2014). Generation, expansion, and differentiation of human pluripotent stem cell (hPSC) derived neural progenitor cells (NPCs). Methods Mol Biol Jul 26. [Epub ahead of print]

    Google Scholar 

  28. Wiles MV, Johansson BM (1999) Embryonic stem cell development in a chemically defined medium. Exp Cell Res 247:241–248

    Article  CAS  PubMed  Google Scholar 

  29. Park C, Afrikanova I, Chung YS, Zhang WJ, Arentson E, Fong Gh G, Rosendahl A, Choi K (2004) A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development 131:2749–2762

    Article  CAS  PubMed  Google Scholar 

  30. Ng ES, Azzola L, Sourris K, Robb L, Stanley EG, Elefanty AG (2005) The primitive streak gene Mixl1 is required for efficient hematopoiesis and BMP4-induced ventral mesoderm patterning in differentiating ES cells. Development 132:873–884

    Article  CAS  PubMed  Google Scholar 

  31. Nostro M, Cheng X, Keller GM, Gadue P (2008) Wnt, activin and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell 2:60–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lindsley RC, Gill JG, Kyba M, Murphy TL, Murphy KM (2006) Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development 133:3787–3796

    Article  CAS  PubMed  Google Scholar 

  33. Naito AT, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I (2006) Developmental stage-specific biphasic roles of Wnt/beta catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci U S A 103:19812–19817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, Reinecke H, Moon RT, Murry CE (2007) Biphasic role for Wnt/ beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A 104:9685–9690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kubo A, Shinozaki K, Shannon JM, Kouskoff V, Kennedy M, Woo S, Fehling HJ, Keller G (2004) Development of definitive endoderm from embryonic stem cells in culture. Development 131:1651–1662

    Article  CAS  PubMed  Google Scholar 

  36. Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, Nishikawa S, Chiba T, Era T, Nishikawa S (2005) Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 23:1542–1550

    Article  CAS  PubMed  Google Scholar 

  37. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    Article  PubMed  Google Scholar 

  38. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  CAS  PubMed  Google Scholar 

  39. Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, Micallef SJ, Park IH, Basford C, Wheeler MB, Daley GQ, Elefanty AG, Stanley EG, Keller G (2011) Stage-specific signaling through TGFb family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138:861–871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bose B, Shenoy PS, Konda S, Wangikar P (2012) Human embryonic stem cell differentiation into insulin secreting β-cells for diabetes. Cell Biol Int 36:1013–1020

    Article  CAS  PubMed  Google Scholar 

  41. Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, Shafritz DA, Keller G (2006) BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 24:1402–1411

    Article  CAS  PubMed  Google Scholar 

  42. Tada S, Era T, Furusawa C, Sakurai H, Nishikawa S, Kinoshita M, Nakao K, Chiba T, Nishikawa S (2005) Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132:4363–4374

    Article  CAS  PubMed  Google Scholar 

  43. Slack JM (1995) Developmental biology of pancreas. Development 121:1569–1580

    CAS  PubMed  Google Scholar 

  44. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394

    Article  CAS  PubMed  Google Scholar 

  45. Hebrok M, Kim SK, Melton DA (1998) Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev 12:1705–1713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Kirchgessner AL, Gershon MD (1990) Innervations of the pancreas by neurons in the gut. J Neurosci 10:1626–1642

    CAS  PubMed  Google Scholar 

  47. Sunami E, Kanazawa H, Hashizume H, Takeda M, Hatakeyama K, Ushiki T (2001) Morphological characteristics of Schwann cells in the islets of Langerhans of the murine pancreas. Arch Histol Cytol 64:191–201

    Article  CAS  PubMed  Google Scholar 

  48. Plank JL, Mundell NA, Frist AY, LeGrone AW, Kim T, Musser MA, Walter TJ, Labosky PA (2011) Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation. Dev Biol 349:321–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA (2003) Insulin staining of ES cell progeny from insulin uptake. Science 299:363

    PubMed  Google Scholar 

  50. Arntfield ME, Van der Kooy D (2013) The adult mammalian pancreas contains separate precursors of pancreatic and neural crest developmental origins. Stem Cell Dev 22:2145–2157

    Article  CAS  Google Scholar 

  51. Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, St-Onge L, Wobus AM (2003) Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci U S A 100:998–1003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Miyazaki S, Yamato E, Miyazaki J (2004) Regulated expression of Pdx-1 promotes in vitro differentiation of insulin producing cells from embryonic stem cells. Diabetes 53:1030–1037

    Article  CAS  PubMed  Google Scholar 

  53. Shiroi A, Ueda S, Ouji Y, Saito K, Moriya K, Sugie Y, Fukui H, Ishizaka S, Yoshikawa M (2005) Differentiation of embryonic stem cells into insulin-producing cells promoted by Nkx2.2 gene transfer. World J Gastroenterol 11:4161–4166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541

    Article  PubMed  Google Scholar 

  55. Shi Y, Hou L, Tang F, Jiang W, Wang P, Ding M, Deng H (2005) Inducing Embryonic stem cells to differentiate into pancreatic beta cells by a novel three step approach using activin A and all-trans retinoic acid. Stem Cells 23:93–110

    Article  Google Scholar 

  56. Madsen OD, Serup P (2006) Towards cell therapy for diabetes. Nat Biotechnol 24:1481–1483

    Article  CAS  PubMed  Google Scholar 

  57. Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G, Majumdar AS (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953

    Article  CAS  PubMed  Google Scholar 

  58. Jiang W, Shi Y, Zhao D, Chen S, Yong J, Zhang J, Qing T, Sun X, Zhang P, Ding M, Li D, Deng H (2007) In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 17:333–344

    Article  CAS  PubMed  Google Scholar 

  59. Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O’Dwyer S, Quiskamp N, Mojibian M, Albrecht T, Yang YH, Johnson JD, Kieffer TJ (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32:1121–1133

    Article  CAS  PubMed  Google Scholar 

  60. Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928

    CAS  PubMed  Google Scholar 

  61. Osada SI, Wright CV (1999) Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 126:3229–3240

    CAS  PubMed  Google Scholar 

  62. Lowe LA, Yamada S, Kuehn MR (2001) Genetic dissection of nodal function in patterning the mouse embryo. Development 128:1831–1843

    CAS  PubMed  Google Scholar 

  63. Vincent SD, Dunn NR, Hayashi S, Norris DP, Robertson EJ (2003) Cell fate decisions within the mouse organizer are governed by graded Nodal signals. Genes Dev 17:1646–1662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Phillips BW, Hentze H, Rust WL, Chen QP, Chipperfield H, Tan EK, Abraham S, Sadasivam A, Soong PL, Wang ST, Lim R, Sun W, Colman A, Dunn NR (2007) Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev 16:561–578

    Article  CAS  PubMed  Google Scholar 

  65. Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H (2009) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 19:429–438

    Article  CAS  PubMed  Google Scholar 

  66. Mao GH, Chen GA, Bai HY, Song TR, Wang YX (2009) The reversal of hyperglycemia in diabetic mice using PLGA scaffolds seeded with islet like cells derived from human embryonic stem cells. Biomaterials 30:1706–1714

    Article  CAS  PubMed  Google Scholar 

  67. Naujok O, Diekmann U, Lenzen S (2014) The generation of definitive endoderm from human embryonic stem cells is initially independent from activin A but requires canonical Wnt-signaling. Stem Cell Rev 10:480–493

    Article  PubMed  Google Scholar 

  68. Kim SK, Melton DA (1998) Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. PNAS U S A 95:13036–13041

    Article  CAS  Google Scholar 

  69. Huang W, Wang G, Delaspre F, Vitery Mdel C, Beer RL, Parsons MJ (2014) Retinoic acid plays an evolutionarily conserved and biphasic role in pancreas development. Dev Biol 394:83–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Kumar SS, Alarfaj AA, Munusamy MA, Singh AJ, Peng I, Priya SP, Hamat RA, Higuchi A (2014) Recent developments in β-cell differentiation of pluripotent stem cells induced by small and large molecules. Int J Mol Sci 15:23418–23447

    Article  PubMed Central  PubMed  Google Scholar 

  71. Mfopou JK, Chen B, Mateizel I, Sermon K, Bouwens L (2010) Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology 138:2233–2245

    Article  CAS  PubMed  Google Scholar 

  72. Drucker DJ (1998) Glucagon-like peptides. Diabetes 47:159–169

    Article  CAS  PubMed  Google Scholar 

  73. Huotari MA, Palgi J, Otonkoski T (1998) Growth factor-mediated proliferation and differentiation of insulin-producing INS-1 and RINm5F cells: Identification of betacellulin as a novel β-cell mitogen. Endocrinology 139:1494–1499

    CAS  PubMed  Google Scholar 

  74. Li L, Seno M, Yamada H, Kojima I (2001) Promotion of β-cell regeneration by betacellulin in ninety percent-pancreatectomized rats. Endocrinology 142:5379–5385

    CAS  PubMed  Google Scholar 

  75. Li L, Seno M, Yamada H, Kojima I (2003) Betacellulin improves glucose metabolism by promoting conversion of intra islet precursor cells to β-cells in streptozotocin-treated mice. Am J Physiol Endocrinol Metab 285:E577–E583

    Article  CAS  PubMed  Google Scholar 

  76. Otonkoski T, Cirulli V, Beattie GM, Mally MI, Soto G, Rubin JS, Hayek A (1996) A role for hepatocyte growth factor/scatter factor in fetal mesenchyme-induced pancreatic β-cell growth. Endocrinology 137:3131–3139

    CAS  PubMed  Google Scholar 

  77. Mashima H, Shibata H, Mine T, Kojima I (1996) Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology 137:3969–7396

    CAS  PubMed  Google Scholar 

  78. Speier S, Gjinovci A, Charollais A, Meda P, Rupnik M (2007) Cx36-mediated coupling reduces beta-cell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics. Diabetes 56:1078–1086

    Article  CAS  PubMed  Google Scholar 

  79. Hammar EB, Irminger JC, Rickenbach K, Parnaud G, Ribaux P, Bosco D, Rouiller DG, Halban PA (2005) Activation of NF-kB by extracellular matrix is involved in spreading and glucose-stimulated insulin secretion of pancreatic b cells. J Biol Chem 280:30630–30637

    Article  CAS  PubMed  Google Scholar 

  80. Weber LM, Hayda KN, Anseth KS (2008) Cell-matrix interactions improve b-cell survival and insulin secretion in three-dimensional culture. Tissue Eng Part A 14:1959–1968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Parnaud G, Hammar E, Ribaux P, Donath MY, Berney T, Halban PA (2009) Signaling pathways implicated in the stimulation of b-cell proliferation by extracellular matrix. Mol Endocrinol 23:1264–1271

    Article  CAS  PubMed  Google Scholar 

  82. Wang X, Ye K (2009) Three dimensional differentiations of embryonic stem cells into islet-like insulin producing clusters. Tissue Eng Part A 15:1941–1952

    Article  CAS  PubMed  Google Scholar 

  83. Saito H, Takeuchi M, Chida K, Miyajima A (2011) Generation of glucose responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro. PLoS One 6:e28209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Mandal A, Tipnis S, Pal R, Ravindran G, Bose B, Patki A, Rao MS, Khanna A (2006) Characterization and in vitro differentiation potential of a new human embryonic stem cell line, ReliCellhES1. Differentiation 74:81–90

    Article  CAS  PubMed  Google Scholar 

  85. Theiler K (1989) The house mouse development and normal stages from fertilization to 4 weeks of age, 2nd edn. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

The authors earlier published the original research article corresponding to this Protocol chapter in Bose et al. (40), where the funding source was duly acknowledged. The authors also greatly acknowledge the contributions of Dr(s) Sudhakar Konda and Pralhad Wangikar, who were also the coinvestigators of the original study. Making of this protocol chapter does not involve any funding from any sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bipasha Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bose, B., Sudheer, P.S. (2015). In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets. In: Turksen, K. (eds) Embryonic Stem Cell Protocols. Methods in Molecular Biology, vol 1341. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_230

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_230

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2953-5

  • Online ISBN: 978-1-4939-2954-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics