Skip to main content

Monitoring Global Structural Changes and Specific Metal-Ion-Binding Sites in RNA by In-line Probing and Tb(III) Cleavage

  • Protocol
  • First Online:
RNA Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1086))

Abstract

In this chapter we describe the use of two methods, in-line probing as well as terbium(III) cleavage. Both methods can be applied to RNAs of any size, structure, and function. Aside from revealing directly metal ion-binding sites these techniques also provide structural information for longer RNA sequences that are out of range to be analyzed with other techniques such as NMR. The cleavage pattern derived from in-line probing experiments reflects local and overall conformational changes in RNA upon the addition of metal ions, metal complexes, or other ligands. On the other side, terbium(III) cleavage experiments are applied to locate specific metal ion-binding sites in RNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das R, Kwok LW, Millett IS et al (2003) The fastest global events in RNA folding: electrostatic relaxation and tertiary collapse of the Tetrahymena ribozyme. J Mol Biol 332:311–319

    Article  PubMed  CAS  Google Scholar 

  2. Woodson SA (2005) Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr Opin Chem Biol 9:104–109

    Article  PubMed  CAS  Google Scholar 

  3. Shiman R, Draper DE (2000) Stabilization of RNA tertiary structure by monovalent cations. J Mol Biol 302:79–91

    Article  PubMed  CAS  Google Scholar 

  4. Batey RT, Rambo RP, Doudna JA (1999) Tertiary motifs in RNA structure and folding. Angew Chem Int Ed Engl 38:2326–2343

    Article  PubMed  Google Scholar 

  5. Costa M, Michel F (1995) Frequent use of the same tertiary motif by self-folding RNAs. EMBO J 14:1276–1285

    PubMed  CAS  Google Scholar 

  6. Cech T, Golden BL (1999) Building a catalytic active site using only RNA. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Springs Harbor, NY, pp 321–349

    Google Scholar 

  7. Oivanen M, Kuusela S, Lonnberg H (1998) Kinetics and mechanisms for the cleavage and isomerization of the phosphodiester bonds of RNA by bronsted acids and bases. Chem Rev 98:961–990

    Article  PubMed  CAS  Google Scholar 

  8. Soukup GA, Breaker RR (1999) Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5:1308–1325

    Article  PubMed  CAS  Google Scholar 

  9. Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334

    Article  PubMed  CAS  Google Scholar 

  10. Pyle AM (2002) Metal ions in the structure and function of RNA. J Biol Inorg Chem 7:679–690

    Article  PubMed  CAS  Google Scholar 

  11. Freisinger E, Sigel RKO (2007) From nucleotides to ribozymes—a comparison of their metal ion-binding properties. Coord Chem Rev 251:1834–1851

    Article  CAS  Google Scholar 

  12. Schnabl J, Sigel RK (2010) Controlling ribozyme activity by metal ions. Curr Opin Chem Biol 14:269–275

    Article  PubMed  CAS  Google Scholar 

  13. Sigel H, Sigel RKO (2013) Metal ion interactions with nucleic acids and their constituents. In: Reedijk J, Poepelmeier K (eds) Comprehensive Inorganic Chemistry. 2nd edn. Elsevier Ltd., Oxford, UK. doi: 10.1016/B978-0-08-097774-4.00317

  14. Ciesiolka J, Marciniec T, Krzyzosiak W (1989) Probing the environment of lanthanide binding sites in yeast tRNA(Phe) by specific metal-ion-promoted cleavages. Eur J Biochem 182:445–450

    Article  PubMed  CAS  Google Scholar 

  15. Walter NG, Yang N, Burke JM (2000) Probing non-selective cation binding in the hairpin ribozyme with Tb(III). J Mol Biol 298: 539–555

    Article  PubMed  CAS  Google Scholar 

  16. Sigel RK, Pyle AM (2003) Lanthanide ions as probes for metal ions in the structure and catalytic mechanism of ribozymes. Met Ions Biol Syst 40:477–512

    PubMed  CAS  Google Scholar 

  17. Sigel RK, Vaidya A, Pyle AM (2000) Metal ion binding sites in a group II intron core. Nat Struct Biol 7:1111–1116

    Article  PubMed  CAS  Google Scholar 

  18. Saito H, Suga H (2002) Outersphere and innersphere coordinated metal ions in an aminoacyl-tRNA synthetase ribozyme. Nucleic Acids Res 30:5151–5159

    Article  PubMed  CAS  Google Scholar 

  19. Harris DA, Tinsley RA, Walter NG (2004) Terbium-mediated footprinting probes a catalytic conformational switch in the antigenomic hepatitis delta virus ribozyme. J Mol Biol 341:389–403

    Article  PubMed  CAS  Google Scholar 

  20. Nahvi A, Barrick JE, Breaker RR (2004) Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 32:143–150

    Article  PubMed  CAS  Google Scholar 

  21. Gallo S, Oberhuber M, Sigel RK et al (2008) The corrin moiety of coenzyme B12 is the determinant for switching the btuB riboswitch of E. coli. Chembiochem 9:1408–1414

    Article  PubMed  CAS  Google Scholar 

  22. Beckert B, Masquida B (2011) Synthesis of RNA by in vitro transcription. Methods Mol Biol 703:29–41

    Article  PubMed  CAS  Google Scholar 

  23. Gallo S, Furler M, Sigel RKO (2005) In vitro transcription and purification of RNAs of different size. Chimia 59:812–816

    Article  CAS  Google Scholar 

  24. Hilario E (2002) End labeling procedures. An overview. Methods Mol Biol 179:13–18

    PubMed  CAS  Google Scholar 

  25. Hilario E (2004) End labeling procedures: an overview. Mol Biotechnol 28:77–80

    Article  PubMed  CAS  Google Scholar 

  26. Huang Z, Szostak JW (1996) A simple method for 3′-labeling of RNA. Nucleic Acids Res 24:4360–4361

    Article  PubMed  CAS  Google Scholar 

  27. Erat MC, Sigel RK (2011) Methods to detect and characterize metal ion binding sites in RNA. Met Ions Life Sci 9:37–100

    Article  PubMed  CAS  Google Scholar 

  28. Pechlaner M, Sigel RK (2012) Characterization of metal ion-nucleic acid interactions in solution. Met Ions Life Sci 10:1–42

    Article  PubMed  Google Scholar 

  29. Hertweck M, Mueller MW (2001) Mapping divalent metal ion binding sites in a group II intron by Mn(2+)- and Zn(2+)-induced site-specific RNA cleavage. Eur J Biochem 268:4610–4620

    Article  PubMed  CAS  Google Scholar 

  30. Dorner S, Barta A (1999) Probing ribosome structure by europium-induced RNA cleavage. Biol Chem 380:243–251

    Article  PubMed  CAS  Google Scholar 

  31. Sambrook J, Russel DW (eds) (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  32. Sigel RK, Freisinger E, Lippert B (2000) Effects of N7-methylation, N7-platination, and C8-hydroxylation of guanine on H-bond formation with cytosine: platinum coordination strengthens the Watson-Crick pair. J Biol Inorg Chem 5:287–299

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the European Research Council (ERC Starting Grant to RKOS), the Swiss National Science Foundation, the Swiss State Secretariat for Education, Research, and Innovation (COST Action CM1105), and the University of Zurich is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Choudhary, P.K., Gallo, S., Sigel, R.K.O. (2014). Monitoring Global Structural Changes and Specific Metal-Ion-Binding Sites in RNA by In-line Probing and Tb(III) Cleavage. In: Waldsich, C. (eds) RNA Folding. Methods in Molecular Biology, vol 1086. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-667-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-667-2_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-666-5

  • Online ISBN: 978-1-62703-667-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics