Skip to main content

Xylem Sap Proteomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1072))

Abstract

Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Raven JA (1993) The evolution of vascular plants in relation to quantitative functioning of dead water-conducting cells and stomata. Biol Rev 68:337–363

    Article  Google Scholar 

  2. Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  CAS  Google Scholar 

  3. Fukuda H (1996) Xylogenesis: initiation, progression, and cell death. Annu Rev Plant Physiol Plant Mol Biol 47:299–325

    Article  CAS  PubMed  Google Scholar 

  4. Satoh S (2006) Organic substances in xylem sap delivered to above-ground organs by the roots. J Plant Res 119:179–187

    Article  CAS  PubMed  Google Scholar 

  5. Buhtz A, Kolasa A, Arlt K et al (2004) Xylem sap protein composition is conserved among different plant species. Planta 219:610–618

    Article  CAS  PubMed  Google Scholar 

  6. Kehr J, Buhtz A, Giavalisco P (2005) Analysis of xylem sap proteins from Brassica napus. BMC Plant Biol 5:11

    Article  PubMed  Google Scholar 

  7. Ligat L, Lauber E, Albenne C et al (2011) Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins. Proteomics 11:1798–1813

    Article  CAS  PubMed  Google Scholar 

  8. Masuda S, Kamada H, Satoh S (2001) Chitinase in cucumber xylem sap. Biosci Biotechnol Biochem 65:1883–1885

    Article  CAS  PubMed  Google Scholar 

  9. Djordjevic M, Oakes M, Li et al (2007) The Glycine max xylem sap and apoplast proteome. J Proteome Res 6:3771–3779

    Article  CAS  PubMed  Google Scholar 

  10. Krishnan H, Natarajan S, Bennett J et al (2011) Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max). Planta 233:921–931

    Article  CAS  PubMed  Google Scholar 

  11. Biles C, Abeles F (1991) Xylem sap proteins. Plant Physiol 96:597–601

    Article  CAS  PubMed  Google Scholar 

  12. Aki T, Shigyo M, Nakano R et al (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49:767–790

    Article  CAS  PubMed  Google Scholar 

  13. Dafoe N, Constabel C (2009) Proteomic analysis of hybrid poplar xylem sap. Phytochemistry 70:856–863

    Article  CAS  PubMed  Google Scholar 

  14. Aguero C, Thorne E, Ibanez A et al (2008) Xylem sap proteins from Vitis vinifera L. Chardonnay. Am J Enol Vitic 59:306–311

    CAS  Google Scholar 

  15. Basha S, Mazhar H, Vasanthaiah H (2010) Proteomics approach to identify unique xylem sap proteins in Pierce’s disease-tolerant Vitis species. Appl Biochem Biotechnol 160:932–944

    Article  CAS  PubMed  Google Scholar 

  16. Alvarez S, Goodger J, Marsh E et al (2006) Characterization of the maize xylem sap proteome. J Proteome Res 5:963–972

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez-Garcia N, Hernandez M, Casado-Vela J et al (2011) Changes to the proteome and targeted metabolites of xylem sap in Brassica oleracea in response to salt stress. Plant Cell Environ 34:821–836

    Article  CAS  PubMed  Google Scholar 

  18. Alvarez S, Marsh E, Schroeder S et al (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340

    Article  CAS  PubMed  Google Scholar 

  19. Rep M, Dekker H, Vossen J et al (2002) Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. Plant Physiol 130:904–917

    Article  CAS  PubMed  Google Scholar 

  20. Houterman P, Speijer D, Dekker H et al (2007) The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol Plant Pathol 8:215–221

    Article  CAS  PubMed  Google Scholar 

  21. Li S, Hartman G, Lee B-S et al (2000) Identification of a stress-induced protein in stem exudates of soybean seedlings root-infected with Fusarium solani f. sp. glycines. Plant Physiol Biochem 38:803–809

    Article  CAS  Google Scholar 

  22. Subramanian S, Cho U-H, Keyes C et al (2009) Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions. BMC Plant Biol 9:119

    Article  PubMed  Google Scholar 

  23. Emanuelsson O, Brunak S, von Heijne G et al (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  24. Small I, Peters N, Legeai F et al (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    Article  CAS  PubMed  Google Scholar 

  25. Fankhauser N, Mäser P (2005) Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21:1846–1852

    Article  CAS  PubMed  Google Scholar 

  26. Eisenhaber B, Wildpaner M, Schultz CJ et al (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol 133:1691–1701

    Article  CAS  PubMed  Google Scholar 

  27. Sigrist CJA, Cerutti L, de Castro E et al (2010) PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38(D):161–166

    Article  Google Scholar 

  28. Punta M, Coggill PC, Eberhardt RY et al (2012) The Pfam protein families database. Nucleic Acids Res 40(D):290–301

    Article  Google Scholar 

  29. McDowall J, Hunter S (2011) InterPro protein classification. Methods Mol Biol 694:37–47

    Article  CAS  PubMed  Google Scholar 

  30. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  31. Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39(D):225–229

    Article  Google Scholar 

  32. Albenne C, Canut H, Boudart G et al (2009) Plant cell wall proteomics: mass spectrometry data, a trove for research on protein structure/function relationships. Mol Plant 2:977–989

    Article  CAS  PubMed  Google Scholar 

  33. Faye L, Boulaflous A, Benchabane M et al (2005) Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23:1770–1778

    Article  CAS  PubMed  Google Scholar 

  34. Minic Z, Jamet E, Négroni L et al (2007) A sub-proteome of Arabidopsis thaliana mature stems trapped on Concanavalin A is enriched in cell wall glycoside hydrolases. J Exp Bot 58:2503–2512

    Article  CAS  PubMed  Google Scholar 

  35. Shevchenko A, Wilm M, Vorm O et al (1996) Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  36. San Clemente H, Pont-Lezica R, Jamet E (2009) Bioinformatics as a tool for assessing the quality of sub-cellular proteomic strategies and inferring functions of proteins: plant cell wall proteomics as a test case. Bioinform Biol Insights 3:15–28

    CAS  Google Scholar 

Download references

Ackowledgments

The authors are grateful to the Université Paul Sabatier-Toulouse 3, France, CNRS, and INRA for support. A grant for the experiments and the postdoctoral position of TDDB were provided by the French Agence Nationale de la Recherche (Grant ANR-08-BLAN-0193-01). The authors wish to thank Drs Benoît Valot and Michel Zivy at the Plateforme d'Analyse Protéomique de Paris Sud-Ouest (PAPPSO) for fruitful collaboration. Thibaut Douché is acknowledged for his contribution to proteomics developments in the lab.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

de Bernonville, T.D., Albenne, C., Arlat, M., Hoffmann, L., Lauber, E., Jamet, E. (2014). Xylem Sap Proteomics. In: Jorrin-Novo, J., Komatsu, S., Weckwerth, W., Wienkoop, S. (eds) Plant Proteomics. Methods in Molecular Biology, vol 1072. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-631-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-631-3_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-630-6

  • Online ISBN: 978-1-62703-631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics