Skip to main content

High-Aspect-Ratio Gold Nanorods: Their Synthesis and Application to Image Cell-Induced Strain Fields in Collagen Films

  • Protocol
  • First Online:
NanoBiotechnology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1026))

Abstract

Gold nanoparticles are receiving considerable attention due to their novel properties and the potential variety of their uses. Long gold nanorods with dimensions of approximately 20 × 400 nm exhibit strong light scattering and can be easily observed under dark-field microscopy. Here we describe the use of this light-scattering property to track micrometer scale strains in collagen gels and thick films, which result from cell traction forces applied by neonatal heart fibroblasts. The use of such collagen constructs to model cell behavior in the extracellular matrix is common, and describing local mechanical environments on such a small scale is necessary to understand the complex factors associated with the remodeling of the collagen network. Unlike other particles used for tracking purposes, gold nanorods do not photobleach, allowing their optical signal to be tracked for longer periods of time, and they can be easily synthesized and coated with various charged or neutral shells, potentially reducing the effect of their presence on the cell system or allowing selective placement. Techniques described here are ultimately applicable for investigations with a wide variety of cells and cell environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  CAS  Google Scholar 

  2. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11(3):169–183

    Article  CAS  Google Scholar 

  3. Hu X, Cheng W, Wang T, Wang Y, Wang E, Dong S (2005) Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte−gold nanorod multilayered films. J Phys Chem B 109(41):19385–19389

    Article  CAS  Google Scholar 

  4. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248

    Article  CAS  Google Scholar 

  5. Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74(3):504–509

    Article  CAS  Google Scholar 

  6. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544

    Article  Google Scholar 

  7. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  8. Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107(26):6269–6275

    Article  CAS  Google Scholar 

  9. Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis. Characterization and Immobilization. Chem Mater 17(6):1325–1330

    Article  CAS  Google Scholar 

  10. Mandal TK, Fleming MS, Walt DR (2002) Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett 2(1):3–7

    Article  Google Scholar 

  11. Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945

    Article  CAS  Google Scholar 

  12. Muir IFK (1998) Control of fibroblast activity in scars: a review. Eur J Plast Surg 21(1):1–7

    Article  Google Scholar 

  13. Dallon JC, Ehrlich HP (2008) A review of fibroblast-populated collagen lattices. Wound Repair Regen 16(4):472–479

    Article  Google Scholar 

  14. Manabe I, Shindo T, Nagai R (2002) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91(12):1103–1113

    Article  CAS  Google Scholar 

  15. Pedersen JA, Swartz MA (2005) Mechanobiology in the third dimension. Ann Biomed Eng 33(11):1469–1490

    Article  Google Scholar 

  16. Wang JH, Lin J (2007) Cell traction force and measurement methods. Biomech Model Mechanobiol 6(6):361–371

    Article  Google Scholar 

  17. Tseng Y, Kole TP, Wirtz D (2002) Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys J 83(6):3162–3176

    Article  CAS  Google Scholar 

  18. Levi V (2005) 3-D particle tracking in a Two-photon microscope: application to the study of molecular dynamics in cells. Biophys J 88(4):2919–2928

    Article  CAS  Google Scholar 

  19. Stone JW, Sisco PN, Goldsmith EC, Baxter SC, Murphy CJ (2007) Using gold nanorods to probe cell-induced collagen deformation. Nano Lett 7(1):116–119

    Article  CAS  Google Scholar 

  20. Vanni S, Christoffer Lagerholm B, Otey C, Lansing Taylor D, Lanni F (2003) Internet-based image analysis quantifies contractile behavior of individual fibroblasts inside model tissue. Biophys J 84(4):2715–2727

    Article  CAS  Google Scholar 

  21. Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97(3):996–1001

    Article  CAS  Google Scholar 

  22. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067

    Article  CAS  Google Scholar 

  23. Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect ratio gold nanorods. Adv Mater 15(5):414–416

    Article  CAS  Google Scholar 

  24. Liu G-SP (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109(47):22192–22200

    Article  CAS  Google Scholar 

  25. Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124(48):14316–14317

    Article  CAS  Google Scholar 

  26. Zitova B (2003) Image registration methods: a survey. Image and Vision Computing 21(11):977–1000

    Article  Google Scholar 

  27. Wilson CG, Sisco PN, Gadala-Maria FA, Murphy CJ, Goldsmith EC (2009) Polyelectrolyte-coated gold nanorods and their interactions with type I collagen. Biomaterials 30(29):5639–5648

    Article  CAS  Google Scholar 

  28. Sisco PN, Wilson CG, Mironova E, Baxter SC, Murphy CJ, Goldsmith EC (2008) The effect of gold nanorods on cell-mediated collagen remodeling. Nano Lett 8(10):3409–3412

    Article  CAS  Google Scholar 

  29. Brown LG (1992) A survey of image registration techniques. ACM Comput Surv 24(4):325–376

    Article  Google Scholar 

  30. Wang N, Ostuni E, Whitesides GM, Ingber DE (2002) Micropatterning tractional forces in living cells. Cell Motil Cytoskeleton 52(2):97–106

    Article  Google Scholar 

  31. Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282(3):C595–C605

    Article  CAS  Google Scholar 

  32. Tolic-Nørrelykke IM, Wang N (2005) Traction in smooth muscle cells varies with cell spreading. J Biomech 38(7):1405–1412

    Article  Google Scholar 

  33. Sutton M, Wolters W, Peters W, Ranson W, McNeill S (1983) Determination of displacements using an improved digital correlation method. Image and Vision Computing 1(3):133–139

    Article  Google Scholar 

  34. Sutton M, Mingqi C, Peters W, Chao Y, McNeill S (1986) Application of an optimized digital correlation method to planar deformation analysis. Image and Vision Computing 4(3):143–150

    Article  Google Scholar 

  35. Sutton MA, Ortwu J-J, Schreir, H (2009) Image correlation for shape, motion and deformation measurements; basic concepts, theory and applications. Springer Science + Business Media, LLC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chernak, D.J., Sisco, P.N., Goldsmith, E.C., Baxter, S.C., Murphy, C.J. (2013). High-Aspect-Ratio Gold Nanorods: Their Synthesis and Application to Image Cell-Induced Strain Fields in Collagen Films. In: Rosenthal, S., Wright, D. (eds) NanoBiotechnology Protocols. Methods in Molecular Biology, vol 1026. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-468-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-468-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-467-8

  • Online ISBN: 978-1-62703-468-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics