Skip to main content

Single-Molecule Analysis of SSB Dynamics on Single-Stranded DNA

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 922))

Abstract

SSB proteins bind to and control the accessibility of single-stranded (ss) DNA generated as a transient intermediate during a variety of cellular processes. For subsequent DNA processing, however, SSB needs to be removed and yield to other proteins while avoiding ssDNA exposure to nucleases. Using single-molecule two- and three-color fluorescence resonance energy transfer (FRET) and fluorescence-force spectroscopy, we recently showed that the SSB/DNA complex is a highly dynamic system and SSB functions as a sliding platform that migrates on ssDNA for recruiting other proteins in DNA repair, replication, and recombination. Here, we present the activity assays in detail for observing the transitions between different SSB binding modes and SSB diffusion on ssDNA in real time by using single-molecule FRET microscopy and for studying how mechanical forces regulate SSB–DNA interactions using fluorescence-force spectroscopy. These single-molecule approaches are generally applicable to many other protein–nucleic acid systems.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ha T (2001) Single-molecule fluorescence methods for the study of nucleic acids. Curr Opin Struct Biol 11:287–292

    Article  PubMed  CAS  Google Scholar 

  2. Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25:78–86

    Article  PubMed  CAS  Google Scholar 

  3. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    Article  PubMed  CAS  Google Scholar 

  4. Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR et al (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93:6264–6268

    Article  PubMed  CAS  Google Scholar 

  5. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288

    Article  PubMed  CAS  Google Scholar 

  6. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76

    Article  PubMed  CAS  Google Scholar 

  7. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  PubMed  CAS  Google Scholar 

  8. Roy R, Kozlov AG, Lohman TM, Ha T (2009) SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature 461:1092–1097

    Article  PubMed  CAS  Google Scholar 

  9. Zhou RB, Kozlov AG, Roy R, Zhang JC, Korolev S et al (2011) SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146:222–232

    Article  PubMed  CAS  Google Scholar 

  10. Joo C, Ha T (2008) Single molecule FRET with total internal reflection microscopy. In: Selvin PR, Ha T (eds) Single molecule techniques: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, p 507

    Google Scholar 

  11. Zhou R, Schlierf M, Ha T (2010) Force-fluorescence spectroscopy at the single-molecule level. Methods Enzymol 475:405–426

    Article  PubMed  CAS  Google Scholar 

  12. Hohng S, Zhou R, Nahas MK, Yu J, Schulten K et al (2007) Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction. Science 318:279–283

    Article  PubMed  CAS  Google Scholar 

  13. Roy R, Kozlov AG, Lohman TM, Ha T (2007) Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J Mol Biol 369:1244–1257

    Article  PubMed  CAS  Google Scholar 

  14. Lohman TM, Ferrari ME (1994) Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63:527–570

    Article  PubMed  CAS  Google Scholar 

  15. Hohng S, Joo C, Ha T (2004) Single-molecule three-color FRET. Biophys J 87:1328–1337

    Article  PubMed  CAS  Google Scholar 

  16. McKinney SA, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91:1941–1951

    Article  PubMed  CAS  Google Scholar 

  17. Grashoff C, Hoffman BD, Brenner MD, Zhou RB, Parsons M et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–U143

    Article  PubMed  CAS  Google Scholar 

  18. Kim HD, Nienhaus GU, Ha T, Orr JW, Williamson JR et al (2002) Mg2 + -dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules. Proc Natl Acad Sci U S A 99:4284–4289

    Article  PubMed  CAS  Google Scholar 

  19. Shi X, Lim J, Ha T (2010) Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe. Anal Chem 82:6132–6138.

    Google Scholar 

  20. Lee S, Lee J, Hohng S (2010) Single-molecule three-color FRET with both negligible spectral overlap and long observation time. Plos One 5:e12270

    Google Scholar 

  21. Lee NK, Kapanidis AN, Koh HR, Korlann Y, Ho SO et al (2007) Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophys J 92:303–312

    Article  PubMed  CAS  Google Scholar 

  22. van Dijk MA, Kapitein LC, van Mameren J, Schmidt CF, Peterman EJG (2004) Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. J Phys Chem B 108:6479–6484

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the members of Ha laboratory for experimental help and discussions. These studies were supported by grants from the National Institutes of Health (RR025341 and GM065367) and the National Science Foundation (0822613 and 0646550). TH is an employee of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekjip Ha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhou, R., Ha, T. (2012). Single-Molecule Analysis of SSB Dynamics on Single-Stranded DNA. In: Keck, J. (eds) Single-Stranded DNA Binding Proteins. Methods in Molecular Biology, vol 922. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-032-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-032-8_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-031-1

  • Online ISBN: 978-1-62703-032-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics