Skip to main content

Mitochondrial Base Excision Repair Assays

  • Protocol
  • First Online:
DNA Repair Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 920))

Abstract

Mitochondrial DNA (mtDNA) is constantly exposed to oxidative injury. Due to its location close to the main site of reactive oxygen species, the inner mitochondrial membrane, mtDNA is more susceptible than nuclear DNA to oxidative damage. The accumulation of DNA damage is thought to be particularly deleterious in post-mitotic cells, including neurons, and to play a critical role in the aging process and in a variety of diseases. Thus, efficient mtDNA repair is important for the maintenance of genomic integrity and a healthy life. The base excision repair (BER) mechanism was the first to be described in mitochondria, and consequently it is the best known. This chapter outlines protocols for isolating mitochondria from mammalian cells in culture and from rodent tissues including liver and brain. It also covers the isolation of synaptic mitochondria. BER takes place in four distinct steps, and protocols describing in vitro assays for measuring these enzymatic steps in lysates of isolated mitochondria are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grollman AP, Moriya M (1993) Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet 9:246–249

    Article  PubMed  CAS  Google Scholar 

  2. Kavli B, Otterlei M, Slupphaug G, Krokan HE (2007) Uracil in DNA—general mutagen, but normal intermediate in acquired immunity. DNA Repair (Amst) 6:505–516

    Article  CAS  Google Scholar 

  3. Croteau DL, Bohr VA (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 272:25409–25412

    Article  PubMed  CAS  Google Scholar 

  4. Hamilton ML, Guo Z, Fuller CD, Van Remmen H, Ward WF, Austad SN, Troyer DA, Thompson I, Richardson A (2001) A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Res 29:2117–2126

    Article  PubMed  CAS  Google Scholar 

  5. Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14:312–318

    PubMed  CAS  Google Scholar 

  6. Schon EA (2000) Mitochondrial genetics and disease. Trends Biochem Sci 25:555–560

    Article  PubMed  CAS  Google Scholar 

  7. Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    Article  PubMed  CAS  Google Scholar 

  8. Melov S (2004) Modeling mitochondrial function in aging neurons. Trends Neurosci 27:601–606

    Article  PubMed  CAS  Google Scholar 

  9. Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW, Wanrooij S, Spelbrink JN, Lightowlers RN, Turnbull DM (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40:275–279

    Article  PubMed  CAS  Google Scholar 

  10. Weissman L, de Souza-Pinto NC, Stevnsner T, Bohr VA (2007) DNA repair, mitochondria, and neurodegeneration. Neuroscience 145:1318–1329

    Article  PubMed  CAS  Google Scholar 

  11. Gredilla R, Bohr VA, Stevnsner T (2010) Mitochondrial DNA repair and association with aging—an update. Exp Gerontol 45:478–488

    Article  PubMed  CAS  Google Scholar 

  12. Seeberg E, Eide L, Bjoras M (1995) The base excision repair pathway. Trends Biochem Sci 20:391–397

    Article  PubMed  CAS  Google Scholar 

  13. Bohr VA (2002) DNA damage and its processing. Relation to human disease. J Inherit Metab Dis 25:215–222

    Article  PubMed  CAS  Google Scholar 

  14. Bohr VA (2002) Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 32:804–812

    Article  PubMed  CAS  Google Scholar 

  15. Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA (2004) Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 18:595–597

    PubMed  CAS  Google Scholar 

  16. Karahalil B, Hogue BA, de Souza-Pinto NC, Bohr VA (2002) Base excision repair capacity in mitochondria and nuclei: tissue-specific variations. FASEB J 16:1895–1902

    Article  PubMed  CAS  Google Scholar 

  17. Lai JC, Clark JB (1979) Preparation of synaptic and nonsynaptic mitochondria from mammalian brain. Methods Enzymol 55:51–60

    Article  PubMed  CAS  Google Scholar 

  18. Kristian T, Hopkins IB, McKenna MC, Fiskum G (2006) Isolation of mitochondria with high respiratory control from primary cultures of neurons and astrocytes using nitrogen cavitation. J Neurosci Methods 152:136–143

    Article  PubMed  CAS  Google Scholar 

  19. Brown MR, Sullivan PG, Geddes JW (2006) Synaptic mitochondria are more susceptible to Ca2+ overload than nonsynaptic mitochondria. J Biol Chem 281:11658–11668

    Article  PubMed  CAS  Google Scholar 

  20. Schrimpf SP, Meskenaite V, Brunner E, Rutishauser D, Walther P, Eng J, Aebersold R, Sonderegger P (2005) Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5:2531–2541

    Article  PubMed  CAS  Google Scholar 

  21. Gredilla R, Weissman L, Yang JL, Bohr VA, Stevnsner T (2010) Mitochondrial base excision repair in mouse synaptosomes during normal aging and in a model of Alzheimer’s disease. Neurobiol Aging 33(4):694–707

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Velux Foundation (Danish Aging Research Center) and The Danish Research Councils to TS, and from CAM/UCM (CCG10-UCM/SAL-4798) to RG. We also thank the members of the Laboratory for DNA repair and Aging at Dep. of Molecular Biology and Genetics, Aarhus University and the members of the Laboratory of Molecular Gerontology at National Institutes of Health, NIH for longstanding collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinna Stevnsner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gredilla, R., Stevnsner, T. (2012). Mitochondrial Base Excision Repair Assays. In: Bjergbæk, L. (eds) DNA Repair Protocols. Methods in Molecular Biology, vol 920. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-998-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-998-3_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-997-6

  • Online ISBN: 978-1-61779-998-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics