Skip to main content

Synthesis, Application, and Tracking of Magnetic Carbon-Coated Nanoparticles in Plants

  • Protocol
  • First Online:
Nanoparticles in Biology and Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 906))

  • 4515 Accesses

Abstract

The behavior of nanoparticles inside plants is gaining importance for its implications in research about putative applications and toxicology. Magnetic carbon-coated nanoparticles can be easily traced through plant tissues using simple and affordable histological techniques. Here we present a methodology for the synthesis of such nanoparticles. We also describe methods for growing plants using rhizotrons (in order to observe the roots), procedures for applying the nanoparticles, taking and processing the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinson DKR, Salejova-Zadrazilova G (2010) Nanotechnologies for nutrient and biocide delivery in agricultural production. ObservatoryNANO. http://www.observatorynano.eu/project/filesystem/files/Controlled%20delivery.pdf. Accessed 18 Apr 2011

  2. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  PubMed  CAS  Google Scholar 

  3. Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manage Sci 65:540–545

    Article  Google Scholar 

  4. Pérez-de-Luque A, Cifuentes Z, Beckstead J, Ryan RO (2010) Amphotericin B nanodisks (AMB-NDs) for treatment of fungal diseases in plants. In: Ribeiro C, de Assis OBG, Mattoso LHC, Mascarenhas S (eds) International Conference on Food and Agriculture Applications of Nanotechnologies (NanoAgri-2010). Embrapa, Sao Pedro

    Google Scholar 

  5. FAO/WHO (2010) Expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications. Meeting report. Food and Agriculture Organization of the United Nations and World Health Organization, Rome

    Google Scholar 

  6. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  7. González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Article  PubMed  Google Scholar 

  8. Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Pérez-de-Luque A, Risueño MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45

    Article  PubMed  Google Scholar 

  9. Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol 8:26

    Article  Google Scholar 

  10. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  PubMed  CAS  Google Scholar 

  11. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    Article  PubMed  CAS  Google Scholar 

  12. Racuciu M, Creanga D (2007) Cytogenetic changes induced by aqueous ferrofluids in agricultural plants. J Magn Magn Mater 311:288–290

    Article  CAS  Google Scholar 

  13. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the projects granted by the Spanish Ministry of Science and Innovation (MICINN) NANOBIOMED (CONSOLIDER-INGENIO 2010 Programme), AGL2008-01467, EUI2008-00157, and EUI2008-00114. Financial support from the Autonomic Government of Aragon (DGA) is also acknowledged through ARAID foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Pérez-de-Luque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pérez-de-Luque, A., Cifuentes, Z., Marquina, C., de la Fuente, J.M., Ibarra, M.R. (2012). Synthesis, Application, and Tracking of Magnetic Carbon-Coated Nanoparticles in Plants. In: Soloviev, M. (eds) Nanoparticles in Biology and Medicine. Methods in Molecular Biology, vol 906. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-953-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-953-2_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-952-5

  • Online ISBN: 978-1-61779-953-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics