Skip to main content

Size-Exclusion Chromatography with Multi-angle Light Scattering for Elucidating Protein Aggregation Mechanisms

  • Protocol
  • First Online:
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 899))

Abstract

In this chapter, application of size exclusion chromatography with inline multi-angle light scattering (SEC-MALS) to protein systems is reviewed, in particular for its use in elucidating mechanistic details of net-irreversible aggregation processes. After motivating why SEC-MALS or analogous techniques are natural choices to interrogate such aggregating systems, the individual techniques (SEC and MALS) are reviewed briefly, as needed for the context of the remainder of the chapter. Illustrative examples are provided to highlight when and how SEC-MALS can be applied to test mass-action kinetic models for protein aggregation. Limitations of the technique, as well as recommendations for troubleshooting and potential errors in data interpretation are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Y, Ogunnaike BA, Roberts CJ (2010) Multi-variate approach to global protein aggregation behavior and kinetics: effects of pH, NaCl, and temperature for α-chymotrypsinogen A. J Pharm Sci 99:645–662

    Article  PubMed  CAS  Google Scholar 

  2. Brummitt RK, Nesta DP, Chang L, Kroetsch AM, Roberts CJ (2011) Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms. J Pharm Sci 100:2104–2119

    Article  PubMed  CAS  Google Scholar 

  3. Li Y, Roberts CJ (2009) Lumry-Eyring nucleated-polymerization model of protein aggregation kinetics. 2. Competing growth via condensation and chain polymerization. J Phys Chem B113:7020–7032

    Google Scholar 

  4. Sahin E, Grillo AO, Perkins MD, Roberts CJ (2010) Comparative effects of pH and ionic strength on protein–protein interactions, unfolding, and aggregation for IgG1 antibodies. J Pharm Sci 99:4830–4848

    Article  PubMed  CAS  Google Scholar 

  5. Roberts CJ (2007) Non-native protein aggregation kinetics. Biotechnol Bioeng 98:927–938

    Article  PubMed  CAS  Google Scholar 

  6. Lomakin A, Teplow DB, Kirschner DA, Benedek GB (1997) Kinetic theory of fibrillogenesis of amyloid β-protein. Proc Natl Acad Sci U S A 94:7942–7947

    Article  PubMed  CAS  Google Scholar 

  7. Goldstein RF, Stryer L (1986) Cooperative polymerization reactions. Analytical approximations, numerical examples, and experimental strategy. Biophys J 50:583–599

    Article  PubMed  CAS  Google Scholar 

  8. Powers ET, Powers DL (2006) The kinetics of nucleated polymerizations at high concentrations: amyloid fibril formation near and above the “supercritical concentration”. Biophys J 91:122–132

    Article  PubMed  CAS  Google Scholar 

  9. Lee C, Nayak A, Sethuraman A, Belfort G, McRae GJ (2007) A three-stage kinetic model of amyloid fibrillation. Biophys J 92: 3448–3458

    Article  PubMed  CAS  Google Scholar 

  10. Laidler KJ (1965) Chemical kinetics, 2nd edn. McGraw, New York, NY

    Google Scholar 

  11. Weiss WF, Young TM, Roberts CJ (2009) Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci 98:1246–1277

    Article  PubMed  CAS  Google Scholar 

  12. Liu J, Andya JD, Shire SJ (2006) A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J 8:E580–E589

    Article  PubMed  CAS  Google Scholar 

  13. Chuan YP, Fan YY, Lua L, Middelberg APJ (2008) Quantitative analysis of virus-like particle size and distribution by field-flow fractionation. Biotechnol Bioeng 99: 1425–1433

    Article  PubMed  CAS  Google Scholar 

  14. Roberts CJ (2003) Kinetics of irreversible protein aggregation: analysis of extended Lumry-Eyring models and implications for predicting protein shelf life. J Phys Chem B107:1194–1207

    Google Scholar 

  15. Morris AM, Watzky MA, Finke RG (2009) Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta Proteins Proteomics 1794: 375–397

    Article  CAS  Google Scholar 

  16. Stockmayer WH (1950) Light scattering in multicomponent systems. J Chem Phys 18:58–61

    Article  CAS  Google Scholar 

  17. Blanco MA, Sahin E, Li Y, Roberts CJ (2011) Reexamining protein–protein and protein–solvent interactions from Kirkwood-Buff analysis of light scattering in multi-component solutions. J Chem Phys 134:225103/1–225103/12

    Article  CAS  Google Scholar 

  18. Zemb T, Lindner P (2002) Neutron, X-rays and light scattering methods applied to soft condensed matter Rev Sub. Elsevier, North Holland

    Google Scholar 

  19. Zimm BH (1948) Apparatus and methods for measurement and interpretation of the angular variation of light scattering; preliminary results on polystyrene solutions. J Chem Phys 16: 1099–1116

    Article  CAS  Google Scholar 

  20. Li Y, Weiss WF, Roberts CJ (2009) Characterization of high-molecular-weight non-native aggregates and aggregation kinetics by size exclusion chromatography with inline multi-angle laser light scattering. J Pharm Sci 98:3997–4016

    Article  PubMed  CAS  Google Scholar 

  21. Philo JS (2006) Is any measurement method optimal for all aggregate sizes and types? AAPS J 8:E564–E571

    Article  PubMed  CAS  Google Scholar 

  22. Sahin E, Jordan JL, Spatara ML, Naranjo A, Costanzo JA, Weiss WF, Robinson AS, Fernandez EJ, Roberts CJ (2011) Computational design and biophysical characterization of aggregation-resistant point mutations for γD crystallin illustrate a balance of conformational stability and intrinsic aggregation propensity. Biochemistry 50:628–639

    Article  PubMed  CAS  Google Scholar 

  23. Andrews JM, Roberts CJ (2007) A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1. aggregation with pre-equilibrated unfolding. J Phys Chem B111:7897–7913

    Google Scholar 

  24. Pallitto MM, Murphy RM (2001) A mathematical model of the kinetics of β-amyloid fibril growth from the denatured state. Biophys J 81:1805–1822

    Article  PubMed  CAS  Google Scholar 

  25. Weiss WF, Hodgdon TK, Kaler EW, Lenhoff AM, Roberts CJ (2007) Nonnative protein polymers: structure, morphology, and relation to nucleation and growth. Biophys J 93: 4392–4403

    Article  PubMed  CAS  Google Scholar 

  26. Andrews JM, Weiss WF, Roberts CJ (2008) Nucleation, growth, and activation energies for seeded and unseeded aggregation of α-chymotrypsinogen A. Biochemistry 47: 2397–2403

    Article  PubMed  CAS  Google Scholar 

  27. Krebs MRH, Domike KR, Cannon D, Donald AM (2008) Common motifs in protein self-assembly. Faraday Discuss 139:265

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sahin, E., Roberts, C.J. (2012). Size-Exclusion Chromatography with Multi-angle Light Scattering for Elucidating Protein Aggregation Mechanisms. In: Voynov, V., Caravella, J. (eds) Therapeutic Proteins. Methods in Molecular Biology, vol 899. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-921-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-921-1_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-920-4

  • Online ISBN: 978-1-61779-921-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics