Skip to main content

Droplet Microfluidics for Single-Cell Analysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 853))

Abstract

This book chapter aims at providing an overview of all the aspects and procedures needed to develop a droplet-based workflow for single-cell analysis (see Fig. 10.1). The surfactant system used to stabilize droplets is a critical component of droplet microfluidics; its properties define the type of droplet-based assays and workflows that can be developed. The scope of this book chapter is limited to fluorinated surfactant systems that have proved to generate extremely stable droplets and allow to easily retrieve the encapsulated material. The formulation section discusses how the experimental parameters influence the choice of the surfactant system to use. The circuit design section presents recipes to design and integrate different droplet modules into a whole assay. The fabrication section describes the manufacturing of microfluidic chip including the surface treatment which is pivotal in droplet microfluidics. Finally, the last section reviews the experimental setup for fluorescence detection with an emphasis on cell injection and incubation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Huebner A, Sharma S, Srisa-Art M et al (2008) Microdroplets: a sea of applications? Lab Chip 8:1244–1254

    Article  PubMed  CAS  Google Scholar 

  2. Lindstrom S, Andersson-Svahn H (2010) Overview of single-cell analyses: microdevices and applications. Lab on a Chip 10: 3363–3372

    Article  PubMed  Google Scholar 

  3. Song H, Chen D L, Ismagilov R F (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed Engl 45:7336–7356

    Article  PubMed  CAS  Google Scholar 

  4. Teh S Y, Lin R, Hung L H et al (2008) Droplet microfluidics. Lab Chip 8:198–220

    Article  PubMed  CAS  Google Scholar 

  5. Taly V, Kelly B T, Griffiths A D (2007) Droplets as microreactors for high-throughput biology. ChemBioChem 8:263–272

    Article  PubMed  CAS  Google Scholar 

  6. Brouzes E, Medkova M, Savenelli N et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA 106:14195–14200

    Article  PubMed  CAS  Google Scholar 

  7. Clausell-Tormos J, Lieber D, Baret J C et al (2008) Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. Chem Biol 15:427–437

    Article  PubMed  CAS  Google Scholar 

  8. Holtze C, Rowat A C, Agresti J J et al (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8:1632–1639

    Article  PubMed  CAS  Google Scholar 

  9. Koster S, Angile F E, Duan H et al (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8:1110–1115

    Article  PubMed  CAS  Google Scholar 

  10. Ahn K, Agresti J, Chong H et al (2006) Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Applied Physics Letters 88:264105

    Article  Google Scholar 

  11. Baroud C N, de Saint Vincent M R, Delville J P (2007) An optical toolbox for total control of droplet microfluidics. Lab Chip 7:1029–1033

    Article  PubMed  CAS  Google Scholar 

  12. Chabert M, Dorfman K D, Viovy J L (2005) Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis 26:3706–3715

    Article  PubMed  CAS  Google Scholar 

  13. Link D R, Grasland-Mongrain E, Duri A et al (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed Engl 45:2556–2560

    Article  PubMed  CAS  Google Scholar 

  14. Niu X, Gulati S, Edel J B et al (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8:1837–1841

    Article  PubMed  CAS  Google Scholar 

  15. Priest C, Herminghaus S, Seemann R (2006) Controlled electrocoalescence in microfluidics: Targeting a single lamella. Applied Physics Letters 89:134101

    Article  Google Scholar 

  16. Abate A R, Hung T, Mary P et al (2010) High-throughput injection with microfluidics using picoinjectors. Proc Natl Acad Sci USA 107:19163–19166

    Article  PubMed  CAS  Google Scholar 

  17. Song H, Tice J D, Ismagilov R F (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed Engl 42:768–772

    Article  PubMed  CAS  Google Scholar 

  18. Frenz L, Blank K, Brouzes E et al (2009) Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab on a Chip 9:1344–1348

    Article  PubMed  CAS  Google Scholar 

  19. Ahn K, Kerbage K, Hunt T P et al (2006) Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Applied Physics Letters 88:024104

    Article  Google Scholar 

  20. Sarrazin F, Prat L, Di Miceli N et al (2007) Mixing characterization inside microdroplets engineered on a microcoalescer. Chemical Engineering Science 62:1042–1048

    Article  CAS  Google Scholar 

  21. Song H, Ismagilov R F (2003) Millisecond Kinetics on a Microfluidic Chip Using Nanoliters of Reagents. J. Am. Chem. Soc. 125:14613–14619

    Article  PubMed  CAS  Google Scholar 

  22. Chabert M, Viovy J L (2008) Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc Natl Acad Sci USA 105:3191–3196

    Article  PubMed  CAS  Google Scholar 

  23. Edd J F, Di Carlo D, Humphry K J et al (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8:1262–1264

    Article  PubMed  CAS  Google Scholar 

  24. Sgro A E, Allen P B, Chiu D T (2007) Thermoelectric manipulation of aqueous ­droplets in microfluidic devices. Anal Chem 79:4845–4851

    Article  PubMed  CAS  Google Scholar 

  25. Baret J C, Beck Y, Billas-Massobrio I et al (2010) Quantitative cell-based reporter gene assays using droplet-based microfluidics. Chem Biol 17:528–536

    Article  PubMed  CAS  Google Scholar 

  26. Huebner A, Srisa-Art M, Holt D et al (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 12:1218–1220

    Article  Google Scholar 

  27. Boedicker J Q, Li L, Kline T R et al (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8:1265–1272

    Article  PubMed  CAS  Google Scholar 

  28. Luo C, Yang X, Fu Q et al (2006) Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation. Electrophoresis 27:1977–1983

    Article  PubMed  Google Scholar 

  29. Xiao K, Zhang M, Chen S et al (2010) Electroporation of micro-droplet encapsulated HeLa cells in oil phase. ELECTROPHORESIS 31:3175–3180

    Article  PubMed  CAS  Google Scholar 

  30. Zhan Y, Wang J, Bao N et al (2009) Electroporation of cells in microfluidic droplets. Anal Chem 81:2027–2031

    Article  PubMed  CAS  Google Scholar 

  31. He M, Edgar J S, Jeffries G D et al (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544

    Article  PubMed  CAS  Google Scholar 

  32. Novak R, Zeng Y, Shuga J et al (2011) Single-cell multiplex gene detection and sequencing with microfluidically generated agarose emulsions. Angew Chem Int Ed Engl 50:390–395

    Article  PubMed  CAS  Google Scholar 

  33. Vijayakumar K, Gulati S, deMello A J et al (2010) Rapid cell extraction in aqueous two-phase microdroplet systems. Chemical Science 1:447–452

    Article  CAS  Google Scholar 

  34. Konry T, Dominguez-Villar M, Baecher-Allan C et al (2011) Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosensors and Bioelectronics 26:2707–2710

    Article  PubMed  CAS  Google Scholar 

  35. Chen D, Du W, Liu Y et al (2008) The chemistrode: a droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. Proc Natl Acad Sci USA 105:16843–16848

    Article  PubMed  CAS  Google Scholar 

  36. Liu W, Kim H J, Lucchetta E M et al (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9:2153–2162

    Article  PubMed  CAS  Google Scholar 

  37. Joensson H N, Samuels M L, Brouzes E R et al (2009) Detection and analysis of cell surface biomarkers expressed at extremely low levels using enzymatic amplification in microfluidic droplets. Angew Chem Int Ed Engl 48:2518–2521

    Article  PubMed  CAS  Google Scholar 

  38. Agresti J J, Antipov E, Abate A R et al (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci USA 107:4004–4009

    Article  PubMed  CAS  Google Scholar 

  39. Baret J C, Miller O J, Taly V et al (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9:1850–1858

    Article  PubMed  CAS  Google Scholar 

  40. Kumaresan P, Yang C J, Cronier S A et al (2008) High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal Chem 80:3522–3529

    Article  PubMed  CAS  Google Scholar 

  41. Zeng Y, Novak R, Shuga J et al (2010) High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays. Anal Chem 82:3183–3190

    Article  PubMed  CAS  Google Scholar 

  42. Johnston K P, Harrison K L, Clarke M J et al (1996) Water-in-Carbon Dioxide Microemulsions: An Environment for Hydrophiles Including Proteins. Science 271:624–626

    Article  CAS  Google Scholar 

  43. Schmitz C H, Rowat A C, Koster S et al (2009) Dropspots: a picoliter array in a microfluidic device. Lab Chip 9:44–49

    Article  PubMed  CAS  Google Scholar 

  44. Huebner A, Olguin L F, Bratton D et al (2008) Development of Quantitative Cell-Based Enzyme Assays in Microdroplets. Analytical Chemistry 80:3890–3896

    Article  PubMed  CAS  Google Scholar 

  45. Shim J-u, Olguin L F, Whyte G et al (2009) Simultaneous Determination of Gene Expression and Enzymatic Activity in Individual Bacterial Cells in Microdroplet Compartments. Journal of the American Chemical Society 131:15251–15256

    Article  Google Scholar 

  46. Granieri L, Baret J-C, Griffiths A D et al (2010) High-Throughput Screening of Enzymes by Retroviral Display Using Droplet-Based Microfluidics. Chemistry & biology 17:229–235

    Article  CAS  Google Scholar 

  47. Srisa-Art M, Bonzani I C, Williams A et al (2009) Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst 134:2239–2245

    Article  PubMed  CAS  Google Scholar 

  48. Abbyad P, Tharaux P-L, Martin J-L et al (2010) Sickling of red blood cells through rapid oxygen exchange in microfluidic drops. Lab on a Chip 10:2505–2512

    Article  PubMed  CAS  Google Scholar 

  49. Bai Y, He X, Liu D et al (2010) A double droplet trap system for studying mass transport across a droplet-droplet interface. Lab on a Chip 10:1281–1285

    Article  PubMed  CAS  Google Scholar 

  50. Courtois F, Olguin L F, Whyte G et al (2009) Controlling the Retention of Small Molecules in Emulsion Microdroplets for Use in Cell-Based Assays. Analytical Chemistry 81:3008–3016

    Article  PubMed  CAS  Google Scholar 

  51. Wootton R C, Demello A J (2010) Microfluidics: Exploiting elephants in the room. Nature 464:839–840

    Article  PubMed  CAS  Google Scholar 

  52. Wu N, Courtois F, Zhu Y et al (2010) Management of the diffusion of 4-methylumbelliferone across phases in microdroplet-based systems for in vitro protein evolution. ELECTROPHORESIS 31:3121–3128

    Article  PubMed  CAS  Google Scholar 

  53. Kreutz J E, Shukhaev A, Du W et al (2010) Evolution of catalysts directed by genetic algorithms in a plug-based microfluidic device tested with oxidation of methane by oxygen. J Am Chem Soc 132:3128–3132

    Article  PubMed  CAS  Google Scholar 

  54. Tewhey R, Warner J B, Nakano M et al (2010) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 27:1025–1031

    Article  Google Scholar 

  55. Holt D J, Payne R J, Abell C (2010) Synthesis of novel fluorous surfactants for microdroplet stabilisation in fluorous oil streams. Journal of Fluorine Chemistry 131:398–407

    Article  CAS  Google Scholar 

  56. Holt D J, Payne R J, Chow W Y et al (2010) Fluorosurfactants for microdroplets: Interfacial tension analysis. Journal of Colloid and Interface Science 350:205–211

    Article  PubMed  CAS  Google Scholar 

  57. Roach L S, Song H, Ismagilov R F (2005) Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal Chem 77:785–796

    Article  PubMed  CAS  Google Scholar 

  58. Baroud C N, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10:2032–2045

    Article  PubMed  CAS  Google Scholar 

  59. Di Carlo D, Irimia D, Tompkins R G et al (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci USA 104:18892–18897

    Article  PubMed  Google Scholar 

  60. Humphry K J, Kulkarni P M, Weitz D A et al (2010) Axial and lateral particle ordering in finite Reynolds number channel flows. Phys. Fluids 22:081703

    Article  Google Scholar 

  61. Niu X, Gielen F, deMello A J et al (2009) Electro-Coalescence of Digitally Controlled Droplets. Analytical Chemistry 81:7321–7325

    Article  PubMed  CAS  Google Scholar 

  62. Abate A R, Chen C H, Agresti J J et al (2009) Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip 9:2628–2631

    Article  PubMed  CAS  Google Scholar 

  63. Srisa-Art M, deMello A J, Edel J B (2009) High-throughput confinement and detection of single DNA molecules in aqueous microdroplets. Chemical Communications6548–6550

    Google Scholar 

  64. Rowat A C, Weitz D A (2008) How to easily punch holes in a PDMS microfluidic device. Lab on a Chip. Chips & Tips. http://www.rsc.org/Publishing/Journals/lc/Chips_and_Tips/punching_holes.asp.

  65. Eddings M A, Johnsson M A, Gale B K (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. Journal of Micromechanics and Microengineering 18:067001

    Article  Google Scholar 

  66. Fuerstman M J, Lai A, Thurlow M E et al (2007) The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7:1479–1489

    Article  PubMed  CAS  Google Scholar 

  67. Duffy D C, McDonald J C, Schueller O J A et al (1998) Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal. Chem. 70:4974–4984

    Article  PubMed  CAS  Google Scholar 

  68. McDonald J C, Duffy D C, Anderson J R et al (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40

    Article  PubMed  CAS  Google Scholar 

  69. Qin D, Xia Y, Whitesides G M (1996) Rapid prototyping of complex structures with feature sizes larger than 20 μm. Advanced Materials 8:917–919

    Article  CAS  Google Scholar 

  70. Microchem. PROCESSING GUIDELINES FOR: SU-8 2025, SU-8 2035, SU-8 2050 and SU-8 2075. Data Sheet. http://www.microchem.com/products/pdf/SU-82000DataSheet82025thru82075Ver82004.pdf.

  71. Hung L H, Lin R, Lee A P (2008) Rapid microfabrication of solvent-resistant biocompatible microfluidic devices. Lab Chip 8:983–987

    Article  PubMed  CAS  Google Scholar 

  72. Tan J L, Tien J, Pirone D M et al (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100:1484–1489

    Article  PubMed  CAS  Google Scholar 

  73. Wang J, Zheng M, Wang W et al (2010) Optimal Protocol for Molding PDMS with a PDMS master. Lab on a Chip. Chips & Tips. http://www.rsc.org/Publishing/Journals/lc/Chips_and_Tips/moldingPDMS.asp.

  74. Desai S P, Freeman D M, Voldman J (2009) Plastic masters-rigid templates for soft lithography. Lab Chip 9:1631–1637

    Article  PubMed  CAS  Google Scholar 

  75. Estevez-Torres A, Yamada A, Wang L (2009) An inexpensive and durable epoxy mold for PDMS. Lab on a Chip. Chips & Tips. http://www.rsc.org/Publishing/Journals/lc/Chips_and_Tips/epoxy_mould.asp.

  76. LaFratta C N (2010) Degas PDMS in Two Minutes Using a Centrifuge. Lab on a Chip. Chips & Tips. http://www.rsc.org/Publishing/Journals/lc/Chips_and_Tips/degas_PDMS.asp.

  77. O’Neil A, Soo Hoo J, Walker G (2006) Rapid curing of PDMS for microfluidic applications. Lab on a Chip. Chips & Tips. http://www.rsc.org/Publishing/Journals/lc/Chips_and_Tips/index.asp.

  78. Siegel A C, Shevkoplyas S S, Weibel D B et al (2006) Cofabrication of electromagnets and microfluidic systems in poly(dimethy-lsiloxane). Angew Chem Int Ed Engl 45:6877–6882

    Article  PubMed  CAS  Google Scholar 

  79. Clausell-Tormos J, Griffiths A D, Merten C A (2010) An automated two-phase microfluidic system for kinetic analyses and the screening of compound libraries. Lab on a Chip 10:1302–1307

    Article  PubMed  CAS  Google Scholar 

  80. Ward T, Faivre M, Abkarian M et al (2005) Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis 26:3716–3724

    Google Scholar 

  81. Lindmo T, Steen H B (1979) Characteristics of a simple, high-resolution flow cytometer based o a new flow configuration. Biophys J 28:33–44

    Article  PubMed  CAS  Google Scholar 

  82. Steen H B, Lindmo T (1979) Flow cytometry: a high-resolution instrument for everyone. Science 204:403–404

    Article  PubMed  CAS  Google Scholar 

  83. Baret J C (2009) A remote syringe for cells, beads and particle injection in microfluidic channels. Lab on a Chip. Chips & Tips. http://www.rsc.org/Publishing/Journals/lc/Chips_and_Tips/remote_syringe.asp.

  84. Hinderliter P M, DeLorme M P, Kennedy G L (2006) Perfluorooctanoic acid: relationship between repeated inhalation exposures and plasma PFOA concentration in the rat. Toxicology 222:80–85

    Article  PubMed  CAS  Google Scholar 

  85. So M K, Yamashita N, Taniyasu S et al (2006) Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China. Environ Sci Technol 40:2924–2929

    Article  PubMed  CAS  Google Scholar 

  86. Frenz L, Blouwolff J, Griffiths A D et al (2008) Microfluidic production of droplet pairs. Langmuir 24:12073–12076

    Article  PubMed  CAS  Google Scholar 

  87. Hashimoto M, Shevkoplyas S S, Zasonska B et al (2008) Formation of bubbles and droplets in parallel, coupled flow-focusing geometries. Small 4:1795–1805

    Article  PubMed  CAS  Google Scholar 

  88. Hong J, Choi M, Edel J B et al (2010) Passive self-synchronized two-droplet generation. Lab on a Chip 10:2702–2709

    Article  PubMed  CAS  Google Scholar 

  89. Prat L, Sarrazin F, Tasseli J et al (2006) Increasing and decreasing droplets velocity in microchannels. Microfluidics and Nanofluidics Volume 2:271–274

    Article  Google Scholar 

  90. Begolo S, Colas G, Viovy J L et al (2011) New family of fluorinated polymer chips for droplet and organic solvent microfluidics. Lab Chip 11:508–512

    Article  PubMed  CAS  Google Scholar 

  91. Shapiro H M (2003) Practical flow cytometry. Wiley-Liss, New York

    Book  Google Scholar 

Download references

Acknowledgments

I am greatly indebted to all my former colleagues from Raindance Technologies, particularly Dr Darren Link, for introducing me to droplet microfluidics. I would like to thank Professor Helmut Strey for useful discussions and Dr Phenix-Lan Quan for her great support. This research was supported by funds from The Center for Biotechnology, an Empire State Development, Division of Science, Technology and Innovation (NYSTAR), Center for Advanced Technology and a grant from NIH-NHGRI (1 R21 HG006206-01)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Brouzes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brouzes, E. (2012). Droplet Microfluidics for Single-Cell Analysis. In: Lindström, S., Andersson-Svahn, H. (eds) Single-Cell Analysis. Methods in Molecular Biology, vol 853. Humana Press. https://doi.org/10.1007/978-1-61779-567-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-567-1_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-566-4

  • Online ISBN: 978-1-61779-567-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics