Skip to main content

How to Benchmark Methods for Structure-Based Virtual Screening of Large Compound Libraries

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

Structure-based virtual screening is a useful computational technique for ligand discovery. To systematically evaluate different docking approaches, it is important to have a consistent benchmarking protocol that is both relevant and unbiased. Here, we describe the designing of a benchmarking data set for docking screen assessment, a standard docking screening process, and the analysis and presentation of the enrichment of annotated ligands among a background decoy database.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Taylor RD, et al. (2002) A review of protein-small molecule docking methods. J Comput Aided Mol Des 16, 151–66.

    Article  PubMed  CAS  Google Scholar 

  2. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432, 862–865.

    Article  PubMed  CAS  Google Scholar 

  3. Leach AR, et al. (2006) Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J Med Chem 49, 5851–5.

    Article  PubMed  CAS  Google Scholar 

  4. Joseph-McCarthy D, et al. (2007) Lead optimization via high-throughput molecular docking. Curr Opin Drug Discov Devel 10, 264–74.

    PubMed  CAS  Google Scholar 

  5. Mohan V, et al. (2005) Docking: successes and challenges. Curr Pharm Des 11, 323–33.

    Article  PubMed  CAS  Google Scholar 

  6. Verdonk ML, et al. (2004) Virtual screening using protein-ligand docking: Avoiding artificial enrichment. J Chem Inf Comput Sci 44, 793–806.

    Article  PubMed  CAS  Google Scholar 

  7. Huang N, et al. (2006) Benchmarking Sets for Molecular Docking. J Med Chem 49, 6789–6801.

    Article  PubMed  CAS  Google Scholar 

  8. Jain AN (2008) Bias, reporting, and sharing: computational evaluations of docking methods. J Comput Aided Mol Des 22, 201–12.

    Article  PubMed  CAS  Google Scholar 

  9. Jain AN, and Nicholls A (2008) Recommendations for evaluation of computational methods. J Comput Aided Mol Des 22, 133–9.

    Article  PubMed  CAS  Google Scholar 

  10. Cleves AE, and Jain AN (2008) Effects of inductive bias on computational evaluations of ligand-based modeling and on drug discovery. J Comput Aided Mol Des 22, 147–59.

    Article  PubMed  CAS  Google Scholar 

  11. Liebeschuetz JW (2008) Evaluating docking programs: keeping the playing field level. J Comput Aided Mol Des 22, 229–38.

    Article  PubMed  CAS  Google Scholar 

  12. Sheridan RP, et al. (2008) Multiple protein structures and multiple ligands: effects on the apparent goodness of virtual screening results. J Comput Aided Mol Des 22, 257–65.

    Article  PubMed  CAS  Google Scholar 

  13. Irwin JJ (2008) Community benchmarks for virtual screening. J Comput Aided Mol Des 22, 193–199.

    Article  PubMed  CAS  Google Scholar 

  14. Nicholls A (2008) What do we know and when do we know it? J Comput Aided Mol Des 22, 239–55.

    Article  PubMed  CAS  Google Scholar 

  15. Hawkins PC, et al. (2008) How to do an evaluation: pitfalls and traps. J Comput Aided Mol Des 22, 179–90.

    Article  PubMed  CAS  Google Scholar 

  16. Good AC, and Opera TI (2008) Optimization of CAMD techniques 3. Virtual screening enrichment studies: a help or hindrance in tool selection? J Comput Aided Mol Des 22, 169–178.

    Article  PubMed  CAS  Google Scholar 

  17. Rohrer SG, and Baumann K (2008) Impact of Benchmark Data Set Topology on the Validation of Virtual Screening Methods: Exploration and Quantification by Spatial Statistics. J. Chem. Inf. Model. 48, 704–718.

    Article  PubMed  CAS  Google Scholar 

  18. Irwin JJ, and Shoichet BK (2005) ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–82.

    Article  PubMed  CAS  Google Scholar 

  19. Lorber DM, and Shoichet BK (2005) Hierarchical docking of databases of multiple ligand conformations. Curr Top Med Chem 5, 739–749.

    Article  PubMed  CAS  Google Scholar 

  20. Lorber DM, and Shoichet BK (1998) Flexible ligand docking using conformational ensembles. Protein Sci. 7, 938–950.

    Article  PubMed  CAS  Google Scholar 

  21. Wei BQ, et al. (2002) A model binding site for testing scoring functions in molecular docking. J Mol Biol 322, 339–355.

    Article  PubMed  CAS  Google Scholar 

  22. Irwin JJ, et al. (2009) Automated docking screens: a feasibility study. J Med Chem 52, 5712–20.

    Article  PubMed  CAS  Google Scholar 

  23. Berman HM, et al. (2000) The Protein Data Bank. Nucleic Acid Res 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  24. Ihlenfeldt WD, et al. (1994) Computation and management of chemical properties in CACTVS: An extensible networked approach toward modularity and flexibility. J Chem Inf Comput Sci 34, 109–116.

    Article  CAS  Google Scholar 

  25. Voigt JH, et al. (2001) Comparison of the NCI open database with seven large chemical structural databases. J Chem Inf Comput Sci 41, 702–712.

    Article  PubMed  CAS  Google Scholar 

  26. Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713.

    Article  PubMed  CAS  Google Scholar 

  27. Ferrin TE, et al. (1988) The MIDAS display system. J Mol Graph 6, 13–27.

    Article  CAS  Google Scholar 

  28. Kuntz ID, et al. (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161, 269–288.

    Article  PubMed  CAS  Google Scholar 

  29. Meng EC, et al. (1992) Automated docking with grid-based energy evaluation. J Comput Chem 13, 505–524.

    Article  CAS  Google Scholar 

  30. Nicholls A, and Honig B (1991) A rapid finite-difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J Comput Chem 12, 435–445.

    Article  CAS  Google Scholar 

  31. McGaughey G, et al. (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47, 1504–1519.

    Article  PubMed  CAS  Google Scholar 

  32. Hawkins P, et al. (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50, 74–82.

    Article  PubMed  CAS  Google Scholar 

  33. Irwin JJ, and Shoichet BK (2005) ZINC--A free database of commercially available compounds for virtual screening. J Chem Inf Model 45, 177–182.

    Article  PubMed  CAS  Google Scholar 

  34. Nicholls A (2008) What do we know and when do we know it? J Comput Aided Mol Des 22, 239–255.

    Article  PubMed  CAS  Google Scholar 

  35. van Drie J (2003) Pharmacophore discovery - lessons learned. Curr Pharm Des 9, 1649–1664.

    Article  PubMed  Google Scholar 

  36. Jain AN, and Nicholls A (2008) Recommendations for evaluation of computational methods. J Comput Aided Mol Des 22, 133–139.

    Article  PubMed  CAS  Google Scholar 

  37. Triballeau N, et al. (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 48, 2534–2547.

    Article  PubMed  CAS  Google Scholar 

  38. Ferrari AM, et al. (2004) Soft docking and multiple receptor conformations in virtual screening. J Med Chem 47, 5076–5084.

    Article  PubMed  CAS  Google Scholar 

  39. Cole JC, et al. (2005) Comparing protein-ligand docking programs is difficult. Proteins 60, 325–32.

    Article  PubMed  CAS  Google Scholar 

  40. Kirchmair J, et al. (2008) Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection--What can we learn from earlier mistakes? J Comput Aided Mol Des 22, 213–228.

    Article  PubMed  CAS  Google Scholar 

  41. Enyedy IJ, and Egan WJ (2007) Can we use docking and scoring for hit-to-lead optimization? J Comput Aided Mol Des 22, 161–168.

    Article  Google Scholar 

Download references

Acknowledgement

The Chinese Ministry of Science and Technology “863” Grant 2008AA022313 (to N.H.) is acknowledged for financial support and Shoichet Lab at UCSF for the DOCK3.5.54 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niu Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Christofferson, A.J., Huang, N. (2012). How to Benchmark Methods for Structure-Based Virtual Screening of Large Compound Libraries. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics